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AFIT-LSCM-ENS-12-05 

Abstract 

 The end of military operations in Iraq brought a new set of challenges for Air 

Force supply professionals as they responsibly reduced levels of assets within the country 

while supporting on-going missions.  This research evaluates two separate supply 

reduction plans that were implemented at Balad Air Base during the Air Force’s final 

months in the area of operations.  The logic of Air Force consumable inventory 

computations are modeled in detail and historical data from supply records are utilized to 

evaluate each plan’s supportability to different notional fleet sizes.  Each plan is 

evaluated under measures of backorders, backorder quantities, and customer wait time.  

Furthermore, this research combines these measures with a commercial business measure 

to ascertain which plan is better suited to reducing supply levels while maintaining 

adequate levels of support to on-going operations.   

 An agent-based model simulation is developed as the analysis technique for this 

study.  Simulation models are excellent tools to evaluate alternative scenarios that are 

otherwise too costly or impractical to evaluate on a live system.  Agent-based modeling 

provides a unique bottom-up approach where analysis is permissible not only at a system 

level but also at the process level.  The model developed for this study allows for the 

differentiation and evaluation of the supply reduction plans implemented at Balad Air 

Base under dynamic conditions.  Additionally, it provides insight for consideration by Air 

Force senior leaders into which plan is better suited to support supply drawdowns in 

future contingency base closings.   
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EVALUATION OF INVENTORY REDUCTION STRATEGIES: BALAD AIR 

 BASE SIMULATION CASE STUDY 
 
 
 

1.  Introduction 

1.1 Background 

When U.S. troops pulled out of Iraq in December 2011 it marked over 8 years of 

U.S. presence in the country.  During that time, the military services mobilized, sustained 

operations, and demobilized both personnel and supporting equipment.  The processes of 

mobilization and demobilization are a set of synchronized phases of a military conflict 

whose deliberate execution ensures the availability of resources for supported and 

supporting commanders.  Of the two phases, mobilization is given much more attention 

as the achievement of military and national security objectives rely on the success of the 

process.  Demobilization, although not as time sensitive, is just as complex and detailed 

as mobilization (Department of Defense (DOD), 2010:91).  The planning of demobilizing 

a military force from an operation commences for a variety of reasons to include 

expiration of authorized service time, changes in the forces required, or political reasons 

(DOD, 2010:91).   

The process of planning for the demobilization of U.S. Forces in Iraq started in 

2008 with the signing of the Security Agreement between the United States and Iraq.  

Actual demobilization of personnel and equipment started in late 2009 and continued 

throughout 2010.  While combat missions concluded in 2010, military missions, under 

the auspice of stability operations, continued through the year 2011.  It’s during this 
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segment of time, when demobilization operations were at their height and the delicate 

balancing act of redeploying equipment and sustaining capability was paramount to on-

going military missions.   

The U.S. Air Force (USAF) started planning demobilization efforts of Balad Air 

Base in February 2010.  The planning process of drawing down supply inventories 

initially started as a concerted effort between the Air Force Central Command 

(AFCENT), 735th Supply Chain Operations Group (735 SCOG), Logistics Management 

Institute (LMI) and Air Combat Command.  As the 735 SCOG documented most of the 

issues in a supply chain drawdown-closure plan, LMI developed a plan to gradually 

drawdown authorized supply levels (Fulk, 2010:5).  Gaining AFCENT’s agreement in 

April of 2010, LMI began the execution of their plan against Balad Air Base’s stock 

levels in August 2010.  Their plan was projected to be a 14-month effort concluding in 

October 2011.  Although somewhat slower than expected, the execution of the plan was 

gradually drawing down stock levels until an unexpected directive was received from the 

Air Staff.  In March 2011, Headquarters USAF, with AFCENT concurrence, directed the 

735 SCOG to abandon plan of gradually drawing down stock levels and set all maximum 

authorized stock levels to zero on base managed consumable items with the following 

characteristics (Fulk, 2010:5). 

• Items not having caused a mission capable event 
  

• Items having caused mission capable event but with zero on-hand balance 
   
This decision imposed a degree of risk which would only be known after the 

completion of the demobilization phase, but it also posed an interesting opportunity to 

research inventory replenishment strategies during the demobilization phases of conflict 
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operations.  The remainder of this chapter is dedicated to providing general background 

material deemed relevant to understanding the problem statement and research 

objectives.  

1.2 Basic Inventory Policy Theory 

Inventories have major influences on operational decisions and, as such, great 

attention is imperative in their management.  Peterson, Pike and Silver (1998) state that at 

the core of any inventory management policy lay three fundamental questions. 

• How often should inventory status be reviewed? 

• When should order for replenishment be made? 

• How much should be ordered? 

Various factors and assumptions, both internal and external to an organization, 

affect the answers to these questions.  The optimal answers are ones that are, on average, 

congruent with the operational objectives of an organization (Peterson and others, 

1998:28).  The optimal answers to these questions dictate what an organization’s 

inventory management policy should be and in what form it exists. 

The type of inventory management policy chosen by an organization is a decision 

that balances the uncertain risk of not having materials when needed against the costs of 

maintaining complete awareness of inventory levels.  Inventory management policies are 

commonly classified as either continuous or periodic.  Continuous inventory policies are 

ones where stock statuses are always known, thereby ensuring an organization’s complete 

situational awareness of its inventory posture (Peterson and others, 1998:236).  Periodic 
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inventory policies are those policies where stock statuses are reviewed at predetermined 

time intervals and great uncertainty exists in knowledge of stock level values.  The choice 

between a continuous or periodic review inventory policy hinges upon the costs of not 

having enough inventory when needed. 

When a company has determined the type of inventory management system its 

operations require, it must choose a form of inventory management policy.  The form of 

an inventory management system centers on whether an organization wants to order a 

constant or variable amount of stock each time they place an order.  Those organizations 

choosing to order a constant amount of stock at each replenishment instance will choose a 

policy of ordering the same quantity every time an order is placed, no matter their current 

inventory position.  While organizations choosing to order a variable amount of stock 

each time will implement a policy of ordering up to a predefined level.  One relevant, 

exogenous factor that dictates a chosen inventory policy and its form is demand. 

1.3 Estimation Methods of Demand 

 To determine the best inventory policy, it helps if an organization knows 

something about the underlying demand pattern of the items in its inventory.  The 

demand for an item is influenced by certain economic factors.  During an item’s useful 

life span different estimation methods, or forecasting techniques, are required to 

reasonably assess how much of an item will be requested by a prevailing market and its 

customers.  Additionally, demand is influenced by how an item is used (Peterson and 

others, 1998:50).  If an item is used independently of any other item, demand on that item 

is said to be independent demand.  If an item is required as the result of a demand on 
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another item, demand on that item is said to be dependent demand.  The aforementioned 

factors affect the patterns of demand witnessed for items.  It is this patterning of an item’s 

demand that plays a role in the development of inventory policies.  

In deriving solutions for inventory management problems, demand patterns are 

usually assumed to take one of two forms – deterministic or stochastic.  Deterministic 

demand essentially means that the organization will know what demand looks like over a 

continuum of time.  Little estimation or forecasting takes place in inventory management 

policies assuming deterministic demand.  Stochastic demand patterns are used for items 

whose demand pattern changes over time.  While this assumption complicates the 

analysis of inventory solutions, it is more applicable to the behaviors of real life 

inventory policies.  Forecasting methods for stochastic demand patterns take on many 

forms – from simple moving averages to robust probability distributions.  The practicality 

of the assumed underlying demand pattern is critical to the selection of the inventory 

policy.  

If demand is always deterministic, the selection of an inventory management 

policy would be simple – match the policy to demand pattern that meets all requirements 

all the time.  The dilemma facing organizations is that demand patterns are usually 

stochastic in that they have variance.  In other words, stochastic demand patterns are 

constantly lumpy or changing in amount and frequency.  In a situation of lumpy demand, 

trying to match the best inventory management policy to the recent changes in demand 

can be detrimental to an organization in terms of pecuniary and human capital costs.  

1.3.1 Demand Variability Effects 
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Unknown and non-constant demand creates uncertainty from which organizations must 

shield themselves.  Demand variation drives an organization to select the inventory 

management policy that, on average, reasonably predicts the underlying demand pattern 

and best protects the organization against uncertainty through the accumulation of 

inventory.  

In a situation with stochastic demand, various factors can be estimated to predict 

average demand.  The factors of the statistical mean and variance of demand are often 

used to calculate a statistical distribution of demand.  Two common distributions used are 

the Poisson and negative binominal.  Sherbrooke (1992) notes that the Poisson 

distribution best exemplifies the case of simple demand with a constant mean and little to 

small variation, while a generalized form of the Poisson distribution, the negative 

binomial distribution, can be used to model stochastic demand by calculating the mean 

and variation of demand separately.  This use of the negative binomial distribution has 

proven useful in the DOD’s current inventory management methods since witnessed 

demand often has a variance greater than its mean.  Referencing common statistical 

notion and theory, Sherbrooke (1992) states the negative binomial distribution regularly 

refers to the probability that it takes  a+x   trials to achieve exactly a successes where 

each trial has a  (1-b)  probability of success.  Sherbrooke’s mathematical notation 

follows (Sherbrooke, Optimal Inventory Modeling of Systems: Mult-Echelon 

Techniques, 1992): 

1.3.2 Negative Binomial Distribution 

𝒏𝒆𝒈(𝒙) =  �𝒂+𝒙−𝟏𝒙 �𝒃𝒙(𝟏 − 𝒃)𝒂 (1.1) 
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where  x = 0….n, a>0 and 0<b<1.  Sherbrooke notes that the mean, μ, and variance-

mean-ratio, V, of this distribution can be defined as: 

𝝁 = 𝒂𝒃
𝟏−𝒃

 𝒂𝒏𝒅 𝑽 = 𝟏
𝟏−𝒃

 (1.2) 

where  V > 1  .  Subsequently, he proves that the parameters of the negative binomial 

function are algebraic manipulations of the above equations: 

𝒂 = 𝝁
𝑽−𝟏

𝒂𝒏𝒅 𝒃 = 𝑽−𝟏
𝑽

 (1.3) 

 Deemer (1974) with his work for Army Material Command demonstrated how 

the negative binomial distribution could be applied to continuous review inventory 

policies.  He outlines the following assumptions used in his model: 

• Demands are fulfilled as they are received from available on-hand stock 

• Backorders are placed when on-hand stock is inadequate to fulfill existing 

demands 

• Replenishment orders are placed when inventory position reaches the pre-

determined order point 

• Replenishment orders are made in quantities equal to the determined inventory 

level minus the current inventory position 

• Reorder points have to be greater than a value of zero 

• Order and Ship Time are known and constant (deterministic) 

• Demands during lead-time follow the negative binomial distribution 

The work of Deemer and others set the foundation for the USAF’s current 

consumable inventory stockage policy.  Mathematical models for the application of the 

negative binomial distribution are numerous and complex.  The reader is referred to 
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Deemer’s work to see how the computational method of recursion applies in this 

situation. 

In combination, the type and form of an organization’s inventory policy dictates 

frequency of inventory reviews, frequency of replenishment orders, and the size of 

replenishment orders.  These decisions affect how much protection an inventory affords 

an organization and its operations from uncertainty.  Due to its nature of operations, the 

military is often faced with great uncertainty in the accomplishment of its mission.  For 

this reason, great lengths are taken by the DoD and military services in determining 

relevant inventory management strategies. 

1.4 Air Force Stockage Policy 

The sustainment of USAF flying missions is greatly contingent upon adequate 

levels of supporting stock.  This supporting stock is made up of two types of stock – 

consumables and recoverables.  Consumables, as the name implies, are those items that 

are consumed in use or cannot be economically repaired (Department of the Air Force 

(DAF), 2011:15).  Recoverables are those items, that upon failure, have the potential to 

be economically repaired (DAF, 2011:15).  As the USAF manages each category of items 

differently, we will only be addressing its management of consumable items in this 

research. 

The goal of USAF Stockage Policy is to maximize customer support while 

minimizing inventory costs (DAF, 2011:1).  USAF stocking decisions are based on the 

presence or absence of demand.  The absence or presence of demand drives numerous 

decision criteria when deciding the range and depth of item stock levels.  In the absence 
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of demand, the USAF uses non-demand based stock leveling techniques rooted in the 

judgment of subject matter experts to establish and manage stock levels of items.  In the 

presence of demand, the USAF uses stock leveling techniques whose theories have been 

proven through numerous academic and analytical studies.  In the context of studying 

inventory replenishment strategies at the end of conflict, focus is given to demand-based 

stock leveling techniques and their applicable inventory policies towards the management 

of consumable items.  

 In setting stock levels for consumable items on which past demands have been 

recorded, the USAF uses past demand data as a predictor of future demand.  The USAF 

conducts extensive demand and item consumption data collection to determine the most 

appropriate stocking actions of an item.  At the root of demand-based stocking decisions 

lie two fundamental questions – what to stock and how much to stock.  The USAF calls 

these concepts range (what to stock) and depth (how much of an item to stock) (DAF, 

2011:2).  An item’s range has to be determined before its depth. 

 The USAF uses several criteria to determine the range of their inventory (see 

Table 1).  In keeping with DoD policy, the USAF’s range of inventory items is 

determined by mission requirements and/or economic need (DAF, 2011:5).  A stock level 

will be computed for any item meeting one of seven range decision criteria as specified 

by Air Force Manual (AFMAN) 23-110, the USAF Supply Manual. 
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Table 1.  USAF Range Criteria 

Range Criteria 
1.  First MICAP demand 
2.  High priority Awaiting Part (AWP) demand 
3.  Mission Impact Code (MIC) 1 
4.  Greater than 11 customer demands 
5.  Demand driven bench stock 
6.  A mission change gain detail exists 
7.  Economic Range Model 

 
 

 How much to stock of an item (item depth) is calculated when the USAF has 

determined a mission requirement or economic need for an item.  Item depth is 

determined by one of two methods contingent upon the item’s authorized managing 

entity.  If the item’s stock level is directed to be managed locally, the item’s depth is 

computed at the base level.  An item’s stock level is computed by centralized agencies if 

that item is directed to be managed by either Air Force Materiel Command (AFMC) or 

the Defense Logistics Agency (DLA).  In this case, the computed stock level will then be 

subsequently applied to the inventories of bases where the item physical resides.  

In base computed stock levels an item’s depth is the aggregate sum of an 

economic order quantity, an order and ship time quantity, and a safety level quantity.  

The economic order quantity (EOQ) utilized by the USAF is based off the cost-

minimizing order quantity algorithm developed by Ford W. Harris in 1913.  It is 

commonly referred to as the Wilson EOQ method.  Order and ship time quantity values 

are a function of an item’s order fulfillment time and its average daily demand rate.  

Safety level quantities can be computed through one of three formulas with the primary 

formula being a function of order fulfillment time, variance of demand, daily demand 

rate, and the variance of order fulfillment time.  In addition to these three components, 
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the USAF applies a truncation factor of 0.999 to the computation to upwardly round the 

value to the next highest whole number.  Base computed stock levels are implemented 

through a continuous review inventory policy. 

In centrally computed stock levels for items with a demand history, an item’s depth is 

calculated using one of two methodologies:  Readiness Base Leveling (RBL) or 

Customer Oriented Leveling Technique (COLT).  The RBL method is used for select 

consumable items managed by AFMC, while COLT, the more common of the two 

methods, is used to compute stock levels for DLA managed items.  Both methodologies 

have an objective function that seeks to minimize backorders and customer wait times.  

Centrally computed stock levels are implemented through a periodic review inventory 

policy implemented by centralized agencies.  

First utilized in 2001 by AFMC at the Air Logistics Centers, COLT fundamentally 

changed the way the USAF computed consumable stock levels.  Before the invention of 

COLT, the USAF strictly utilized Harris’s EOQ model to manage consumable items 

procured through DLA (Gaudette and others, 2001:4).  COLT relaxes the assumptions 

made by EOQ model and seeks to minimize customer wait times under pecuniary 

constraints.  COLT overcomes the following common violations to the EOQ assumptions 

through a multi-echelon systems approach that addresses the demand and lead-time 

variability commonly observed in today’s supply chain. 

• Known and constant lead-time 

• Known and constant demand 

• Demand independence 

• Single echelon supply chains 
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• Known ordering and holding costs  

 
Witnessing the benefits of COLT at the depot levels, AFMC worked with other 

USAF major commanders late in the year 2003 to apply the COLT methodology to base 

level inventories.  The biggest advantage to using COLT at the base level is that it 

computationally linked wholesale supply performance data to retail supply requirements 

(DAF, 2004:43).  COLT achieves this linkage with various factors and a fundamentally 

different assumption regarding demand.  First, COLT utilizes the percentage of time a 

wholesale activity expects to have an item available when requested and the historical 

average time a customer has had to wait for a backordered part (Vinson and Gaudette, 

2002:19).  Secondly, COLT assumes that demand during lead-time is distributed as a 

negative binomial random variate (Vinson and Gaudette, 2002:19).  This distributional 

assumption is based in part on previous data showing that demand variance often exceeds 

the mean of demand during lead-time (Deemer, 1974; Vinson and Gaudette, 2002:19).   

As stated previously, COLT’s objective function seeks to reduce customer wait 

time under fiscal constraints.  The initial implementation of COLT was based strictly on 

the achievement of a stock level within a fiscal constraint.  Due to budgetary processes 

and the tendency of the initial COLT model to optimize customer wait time as a function 

of inventory investment, stock levels were computed noticeably lower in base level 

inventories.  Due to the impact of small stock levels at a base, the marginal analysis 

method of the COLT method was matured to set stock levels under not only fiscal 

constraints but also a predefined target performance objective (DAF, 2004:28).  This 

target performance objective, known as a sort value, was determined by AFMC to be the 
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most acceptable method in setting stock levels for base inventories.  The COLT model is 

now used for computing stock levels for DLA consumables at both deployed and home 

station locations. 

1.5 Problem Statement 

As the USAF completes its withdraw from Iraq and sets its focus on the 

remainder of operations in Afghanistan, the need for a synchronized plan that best 

redeploys equipment while sustaining capabilities in a complex environment will re-

emerge for senior leadership.  While variables and factors at the macro-level of 

operations will play an enormous role in the demobilization effort, an understanding of 

actions at the micro-level of operations will aid in the development of a successful plan.  

The goal of this research project is to evaluate the recent supply reduction methods of the 

Iraq withdrawal to gain an understanding of consumable inventory management policies 

that can be used in future demobilization efforts.  In addition, this research attempts to 

provide an unbiased evaluation of inventory reduction plans and their impact to mission 

accomplishment in contingency situations. 

1.6 Research Questions 

1. Should drawdowns, at the system level, of inventory at contingency locations be 
treated any differently than the redistribution of excess inventory at peacetime 
locations?  

 
2. Is there a statistical and/or practical difference among policies for reducing 

inventory levels in the final phases of a contingency operation? 
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3. What are appropriate measures to be used in evaluating policies for drawdown of 
inventory in a contingency environment? 

 
4. What parameters should guide inventory drawdowns in future contingency 

operations? 
 

1.7 Scope and Limitations 

 The investigative questions posed above are only a subset of the range of 

questions that can be addressed with the appropriate simulation model.  Simulation 

models are appropriately suited for this research as there is no simple analytical model 

and the real world system has complex interactions and interdependences that make it 

challenging to understand macro-level results (Carson, 2005: 17).  The purpose of this 

project is to evaluate past inventory management actions in the hopes of developing new 

theories and guidelines of inventory management for use during the phases of 

contingency operations.   

1.8 Outline 

 Chapter 2 provides a detailed description of model development along with 

pertinent information of input data modeling and output analysis.  Chapter 3 is an 

application of the model to the case study of the Balad AB drawdown plans along with 

results.  Chapter 4 concludes the thesis by discussing significant findings and providing 

recommendations for future research.  Chapters 2 and 3 are structured as an individual 

journal paper and conference proceedings.  
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2.  Simulation of Base Stock Level Reduction for an Overseas Contingency 

Operating Base 

2.1 Introduction 

Outdated supply strategies and the USAF’s continued presence in Saudi Arabia 

after the first Gulf War gave cause to the recommendation of new supply processes in 

support of sustainment operations at contingency locations (Hunt, 2011).  With the 

conclusion of the Gulf War, the USAF again faced a situation where lagging supply 

strategy caused the redeployment of equipment to be conducted hastily with an enormous 

amount of work levied upon those stateside supply professionals who received the 

equipment (Fulk D. A., 2011).  During the war in Iraq, supply support strategies 

developed after the conclusion of sustainment operations in Saudi Arabia were 

implemented with success.  Contrasting to this success was the fact that USAF supply 

professionals were faced with the challenge of moving years’ worth of inventory out of a 

war zone yet again.  

To prevent the situation that occurred in Saudi Arabia, the Global Logistics 

Support Center (GLSC) developed a plan that would gradually reduce supply levels and 

systematically convert sustainment levels of inventory back to expeditionary levels.  The 

goals behind this plan were threefold:  ensure the preservation of equipment 

accountability, maximize weapon system availability to the very end of operations, and 

support an efficient and effective base closure effort (Fulk, 2010).  The computational 

methods behind this planned drawdown assumed a linear decreasing trend in demand that 

would require support up until a time where it would be feasible to support requirements 
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out of readiness spare kits (RSP).  Upon gaining agreement on the plan with Air Force 

Central Command (AFCENT), GLSC’s lead unit, the 735th Supply Chain Operations 

Group (SCOG), implemented their plan against Balad AB’s inventory.  The developed 

plan performed within expectations up until a decision was made by the Air Staff, with 

AFCENT concurrence, to immediately zero out stock levels on items that either had not 

caused a non-mission-capable for supply (NMCS) event in the past or had previously 

caused a NMCS event but maintained a zero on-hand balance as of the date of the 

decision.  These items are identified in the USAF’s supply system with a mission impact 

code (MIC) of 1 and are commonly referred to as MIC-1 items. 

The situation and decisions regarding the plan to reduce inventory at Balad AB 

presents unique opportunity to study different facets of inventory management policy.  

Analytically, the plan presents a situation in which USAF inventory management policies 

could be evaluated under the assumption of a linear decreasing trend in demand.  The 

situation also brings up strategic considerations surrounding inventory management 

policies and processes in the redeployment phase of contingency.  The solutions are at 

best estimations due to the fact that developed plans were not carried through to the 

closure of Balad AB.  It is the clarification and development of estimations and 

assumptions into strategies and policies that will aid supply support strategies in future 

redeployments.  An agent-based model simulating Air Force inventory management 

policies was developed to compare and contrast the planned and implemented inventory 

reduction techniques. 
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2.2 Overview 

 This research develops an agent-based simulation model of the retail supply chain 

supporting Balad AB during its closure.  The success of a supply chain, especially one 

which supports deployed warfighters, depends upon the interactions of many different 

complex processes and systems.  Abstractions of four inventory management processes 

are used in this research to evaluate the inventory reduction plans used during Balad 

AB’s closure and to broaden the understanding of feasible strategies that could be utilized 

to reduce the inventory of a contingency operating base back to expeditionary levels.  

The first process conceptualizes how demands are placed on the supply chain at the air 

base.  The second process of the model represents the processing and fulfilling of 

customer demands by a supporting primary operating stock (POS) and deployed RSP 

inventories.  The third process abstracts the logic of USAF inventory management 

computations.  Finally, the fourth process generalizes the resupply of inventory levels at 

the deployed operating base.  

 The use of agent-based modeling to study inventory reduction is an untested 

approach.  Many academic studies in the analytical fashion have attempted to determine 

an optimal algorithm that would best reduce inventories under the assumption of linear 

decreasing demand – see Barbosa and Friedman (1979);  Ramani and Venkatraman 

(1988); Hill, Omar and Smith (1999); and Zhao, Yang and Rand (2001).  All of these 

authors seek to determine the optimal point at which the stocking of inventory should be 

suspended in order to minimize ordering and replenishment costs while still maintaining 

an acceptable degree of service.  The approach in this research is not to determine that 
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optimal point, but to understand the characteristics of decreasing demand in order to 

increase the depth of knowledge regarding wartime supply strategies.  The use of 

simulation is very applicable to this topic since the application of different policies and 

the study of their respective impact on the overall system cannot be achieved without 

incurring great opportunity and pecuniary costs.  Banks and others (2010) defend the use 

of simulation in decision-making when the experimentation of  new designs or policies 

can take place before their implementation in order to investigate and gain insight into 

potential outcomes.  Hence the use of a simulation model for evaluating and studying the 

differing inventory reduction plans at Balad AB. 

2.3 Model Development 

Many factors influence the performance of the USAF inventory management 

system.  Some factors, such as unit price, are controllable through management decisions.  

Other factors, such as the stock availability of upstream suppliers, are out of a supply 

professional’s control.  They all, though, have some influence in the parameterization and 

performance of the supply chain management system.  The developed model provides 

flexibility in the setting of such parameters to evaluate simulated expeditionary and 

contingency operations.  While the focus of the model is to study the different inventory 

reduction plans that were implemented at Balad AB, the setting of various factors in 

various combinations is possible thus providing an analyst many different options from 

which to experiment.  Parameters available for alteration are listed in Appendix A, while 

an overall flow of the model is provided in Figure 1. 
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Agents Generate Demand
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Acronyms
ASL – Adjusted Stock Level
DDFR – Daily Demand Frequency Rate
DDR – Daily Demand Rate
EDQ – Expected Demand Quantity
ELRS – Expeditionary Logistics Readiness Squadron
E(DDFR) – Expected Value of DDFR
NBD - Negative Binomial Distribution
SoS – Source of Supply
VOD – Variance of Demand

 

Figure 1.  General Model Flow 

North and Macal (2007) state that a model’s execution time of a simulation can be 

divided into two phases – the total time simulated (execution horizon) and the period 

applicable to answering questions and assisting decision making (guidance horizon).  The 

period within the execution horizon, but outside the guidance horizon is commonly 

referred to as the initialization period.  The initialization period allows the model to 

remove any bias from starting the system empty and idle.  The developed model for this 

thesis has a static execution horizon of 27 months and a dynamic guidance horizon that 

can be set before the model’s execution.  A simulation execution horizon of 27 months 

was chosen to allow for an adequate initialization period that can be set by the analyst.  A 

recommended 180 days of activity should be simulated by the model before capturing 

2.3.1  Model Initialization 
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data for analysis to allow a substantial amount of demand to have been processed through 

the system (see Figure 2). 

 

 

Figure 2.  Demand Behavior of Developed Model over Time 

GLSC’s plan developed for Balad AB was a 14-month drawdown plan that would 

remove all POS inventory from the base’s retail system two months before the base 

closing (Fulk, 2010).  Given the high variability of the simulation’s initial start-up period 

and the fact that asset levels are updated quarterly (DAF, 2011), an initialization period of 

no less than 400 days’ worth of simulated time is recommended (see Figure 2).  This 

initialization period allows a sufficient number of demands to be generated and the 

accurate calculation of demand levels and reorder points when using either base or 

central computation methods. 

The occurrence of requirements on an inventory system, demand, has often been 

modeled as discrete probability distribution in simulation models.  This event is often 

looked at holistically rather than from the perspective of the individual or entity 

generating a demand.  The developed model takes a scalable approach to generating 

demand by allowing agents to place requirements on the inventory system independently 

2.3.2 Demand Generation 
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of each other.  Each agent generates a demand based on a statistical distribution.  The 

total demands placed on the system are a function of demands placed by all agents.  The 

use of agents in this manner deviates from some of the standard agent characteristics that 

Macal and North consider such as: 

• An agent interacts with other agents 

• An agent is situated in an environment where it can interact with other 

agents 

• An agent can have goal-directed behaviors  

• An agent has the ability to learn and adapt its behaviors based on its 

experience with the external environment. 

 Macal and North (2008), though, state that agents do not necessarily need to 

possess all of these characteristics to be considered an agent-based model.  The 

methodology by which agents are used in this model doesn’t necessary preclude the 

model from being considered agent-based as Chan et al (2010) point out that agent-based 

simulation is usually a hybrid model consisting of discrete events generated by 

autonomous objects (agents).  The ability of the agents to simultaneously and 

independently place demands is what makes agent-based modeling and simulation a 

powerful tool to understanding the research under question (Chan et al, 2010).  The use 

of a fleet size parameter in the model provides scalability to the model by allowing the 

population of agents placing demands to be set between a value of one, a single aircraft, 

and 36, a multiple of either a six or twelve aircraft unit type code tasking requirement.  

Demands for two parts are generated at a frequency described by each part’s daily 

demand frequency rate (DDFR) and at a random size based off the part’s daily demand 
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rate (DDR).  Each demand is simply described by the requested part type, a generation 

timestamp, and the quantity demanded.  Demands are generated through messages, 

containing the three aforementioned parameters, as the agent transitions between 

different states.  Agent states can be considered triggered responses or actions.  To 

simulate the operation of an aircraft, five states were modeled for agent behavior:  

available, flight, maintenance check, part breakage, part maintenance.  As the agent 

transitions to the part breakage state a demand occurs and a message is sent placing a 

demand on our inventory system.  Finally, the actions of placing the part back onto the 

aircraft are simulated by the agent’s assuming a “part maintenance” state.  There is no 

timing of maintenance actions simulated in the developed model, making them an 

insignificant factor to the model.  Their programming allows for use in future studies.  A 

representation of an agent’s state chart is displayed in Figure 3. 

 

Figure 3.  Agent State Chart 
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 In the developed model, all demand fulfillment logic is executed by the entity 

labeled ELRS (Expeditionary Logistics Readiness Squadron).  The ELRS entity is a java 

active object that receives messages from agents and either fulfills the agents’ demands 

or queues the agents’ demands when insufficient stock is present in the inventory.  Logic 

within the ELRS object is constantly run on a simulated daily basis to process agent 

demands.  Demand fulfillment is executed through the utilization of two sources of stock 

- the POS inventory and the RSP inventory.  The POS inventory is always checked for 

parts before the RSP inventory. 

2.3.3 Demand Receipt and Stock Issue Process 

Upon receiving an agent demand, the logic within the ELRS object will first 

check the inventory levels of its POS.  If enough stock is present in the POS, then the 

demand is fulfilled completely from this source of parts.  If the inventory levels of the 

POS are insufficient in fulfilling the entire demand quantity, the stock issue logic satisfies 

the demand by issuing then remaining on-hand stock in the POS inventory and then 

fulfilling the delta of demand with on-hand stock from the RSP inventory.  If unable to 

issue any stock from POS, the RSP inventory is used to fulfill the agent demand.  

Common to the issue logic for the POS, logic for issues from the RSP will fulfill as much 

of the demand quantity as possible.  If the inventory position of a part is at such a status 

where current on hand stock in either the POS or RSP inventory cannot meet current and 

future demands, then a backorder is queued for the demand.  A flowchart for the receipt 

of demand and stock issuing logic can be found in Appendices B and C. 
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The computation of consumable stock levels can occur through two different 

methods, each executed by one of four events.  In the initialization of the model, the 

analyst selects either standard base computations for stock levels or the Customer 

Oriented Leveling Technique (COLT) marginal analysis method utilized by AFMC in the 

calculation of consumable stock levels.  The model will use the selected technique to 

compute consumable item stock levels at the following events. 

2.3.4 Computation of Consumable Stock Levels 

• Initial level computation executed on the 30th day of simulated time. 

• Anytime the inventory position is less than or equal to the item’s reorder point 

and the amount of change equals or exceeds thresholds defined by the “Square 

Root” rule in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-

21. 

• At the simulated times of 1 Jan, 1 Apr, 1 Jul and 1 Oct to represent the quarterly 

update of stock levels. 

• At monthly intervals when a closure method has been selected by the analyst 

during the initialization of the model. 

The standard base computations in the model involve traditional equations for 

economic order quantity, order and ship time quantity and safety level quantities.  The 

variance equations for demand and order and ship time specified in AFMAN 23-110 have 

been coded in the model as well.  The coding for these equations can be found in 

Appendix J.   
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The COLT method compares the calculation of expected backorders for each item 

given the demand for the items and conducts a marginal analysis of the two items, 

increasing the reorder point of the item that produces the largest marginal benefit in the 

reduction of expected backorders.  The coding for the COLT method assumes a negative 

binomial distribution of expected backorders and conducts a marginal analysis method 

with a sort value target equal to the one dated 25 Mar 2011 for Balad AB.  For an in-

depth explanation of the application of the negative binomial distribution with respect to 

backorders and the COLT methodology the reader is referred to articles by Deemer 

(1974), Fulk et al (2006) and Vinson (2002).  The coding for the negative binomial 

distribution of backorders and the COLT marginal analysis method can be found in 

Appendices L and M. 

 The simulated supply chain creates customer backorders as necessary when 

requirements cannot be met with on-hand stock from either the POS or RSP inventory 

(DAF, 2011).  The developed model will only create a customer backorder when the 

combined stock levels of the POS and RSP inventories are insufficient in meeting the 

requirement.  The model simulates backorders by replacing the demand quantity in the 

original demand request with a quantity equal to the delta of unfilled demand.  This 

precludes the model from placing another demand on the system.  If an agent’s demand is 

partially filled, the original demand is replaced by a demand equal in size to what remains 

to be fulfilled for the agent.  An agent’s demand is only deleted from the model when it is 

fulfilled in its entirety.  

2.3.5  Backorder Processing 
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 The replenishment process of the model replicates the described continuous 

review inventory replenishment model in AFMAN 23-110, Volume 2, Part 2, Chapter 19, 

Attachment 19D-1.  On a daily basis, the model conducts a continuous review of its 

inventory levels to determine each part’s inventory position.  The inventory position of a 

part is equal to the sum of on hand quantities in both the POS and RSP inventories and 

any quantity of the part already on order minus any quantity of the part on backorder.  

Whenever the inventory position for an item is less than or equal to the reorder point 

calculated by the model, the logic in the ELRS active object generates a stock 

replenishment order there by “pulling” inventory from the source of supply (DAF, 2011).  

The amount required for replenishment is equal to the total base need minus the inventory 

position (DAF, 2011).  Stock replenishment orders take the form of messages passed 

between the ELRS active object and the SoS (Source of Supply) active object.  The SoS 

could represent any source of supply for parts, but in this study it represents the Defense 

Logistics Agency (DLA).  Replenishment order messages contain a numerical identifier 

for the part requested and the replenishment order quantity.  Each time a replenishment 

message is generated, the time and amount of the order are captured for statistical 

measures of order and ship time.  A flow chart for the stock replenishment logic and the 

associated java code can be found in Appendix E. 

2.3.6  Replenishment Process 

 When an inventory reduction method has been selected in the model and aircraft 

are present, the ELRS object will initiate excess stock shipments anytime the on hand 

2.3.7  Excess Stock Shipment Process 
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quantity of POS for a part exceeds a newly computed order up-to-level during the 

specified drawdown period.  This logic simulates the shipment of excess stock off the 

base during redeployment operations at a contingency location.  If aircraft remain in the 

model when a newly computed POS level creates an excess shipment, the model logic 

will “ship” the quantity of stock above the newly computed POS level.  If no aircraft are 

present in the model when a newly computed POS level creates an excess shipment, the 

model logic will first fill any stock level deficiency in the RSP and then “ship” any 

remaining excess POS inventory.  These transactions are captured in the model’s output.  

Logic for the creation of excess shipments and accompanying java code is presented in 

Appendix F. 

 Two inventory reduction methods are presented in the model.  One is based on the 

setting of non-demand-based stock levels for POS inventory.  AFMAN 23-110 describes 

the policy of setting non-demand-based stock levels as a way of establishing sufficient 

stock levels in situations where historical demand patterns are not reasonable estimations 

of future demand patterns (DAF, 2011).  The other method available for selection models 

the formula developed by the 735th SCOG to linearly decrease stock levels.  This 

method, referred to as expected demand quantities, calculates stock levels as a function of 

the item’s daily demand rate and the time left until base closure.  For ease of reference, 

this plan will be referred to as the “EDQ” plan.  The developed model allows the analyst 

to select the inventory reduction method and a start date for it to be implemented.   

2.3.8  Inventory Reduction Methods 
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 The settings of non-demand-based stock levels are a way to adjust stock levels 

based on the assumption that past demand is not a predictor of future demand.  The 

method is referred to as adjusted stock levels (ASLs).  The USAF has developed three 

different types of ASLs to adjust supply support against changing levels of customer 

demand:  minimum, maximum, and fixed.  Of the three, the setting of maximum ASLs 

are used in this model as it was the decision by Air Staff to set maximum ASLs on non-

MIC-1 and MIC-1 assets with zero on-hand balances.  Maximum ASLs act as stockage 

ceilings in that they restrict computed stock levels to a specified level.  In the case of 

Balad AB’s closure, maximum ASLs on the POS inventories of non-MIC 1 and MIC-1 

items with zero on-hand balances were set to a value of zero (Fulk D. A., Balad Levels 

Drawdown Plan, 2011).  This particular application of applying maximum ASLs on 

Balad AB’s POS effectively zeroed out demand levels and reorder points on those items 

identified under this plan.  This policy is demonstrated in the model by zeroing out an 

item’s level at the time specified during the initialization of the model.  For future 

reference, this plan will be referred to as the “Maximum ASL” plan.  The flowchart and 

java logic for this inventory reduction plan can be found in Appendix Q. 

The EDQ plan developed by the 735th SCOG was based on a formula of expected 

demand that calculated expected future demands as a function of an asset’s DDR and the 

remaining time of base operations.  The expected demand formula is similar to a mission 

change DDR (MCDDR) that is used by stateside bases undergoing increases or decreases 

in the inventory of an assigned weapon system, but it doesn’t utilize sortie information as 

in the MCDDR calculations.  The expected demand formula simply applies the remaining 

time in a finite horizon to an item’s DDR under the assumption that demand on an asset 
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and thus its DDR would decrease in a linear fashion as operations scale back.  It should 

be noted that this plan assumed at least some correlation between past demand and future 

demand.  The parameters of the formula zero out POS levels two months prior to the 

closure of the base or when aircraft no longer remain present in the model.  It is at this 

time when any further operations were assumed to be supported out of RSP inventories.  

Special rounding rules were to have been applied to keep stock available as the time 

horizon for Balad AB’s closure decreased.  Model logic and implemented code can be 

found in Appendix Q. 

 In order to maintain a focus on the research in question, various assumptions were 

made that influenced model development.  In addition to assumptions specified by 

Deemer (1970) when studying continuous review inventory policies, the following key 

assumptions were made: 

2.3.9  Assumptions 

• Data obtained through AFLMA, the GLSC, and LIMS-EV is accurate and 

complete. 

• Demand interarrival times are assumed to be an exponentially distributed function 

of the item’s daily demand frequency rate (DDFR) divided by a denominator 

equal to the average amount of aircraft flying sorties from Balad AB on 25 Mar 

2011. 

• Demand size is assumed to be distributed according to the negative binomial 

function with a variance calculated using the variance of demand (VOD) formula 

specified by AFMAN 23-110. 
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• RSP demand levels are non-demand based and POS levels are demand based.  

The RSP levels do not represent the actual levels of the items in RSP kits at Balad 

AB, but are modeled to provide a sense of realism in the model.  

• Bench stock is not explicitly modeled and assumed part of the POS inventory. 

• No cannibalization, lateral resupply or local sourcing of parts.  All parts are 

sourced from the designated source of supply. 

• No commonality exists among parts for different weapon systems. 

• Delays for inbound transportation of stock are modeled at two levels, but no delay 

exists for transportation of stock off base. 

• RSPs are filled with any excess items from the POS inventory during the 

drawdown phase of the base. 

• RSPs remain at the contingency location until the end of the drawdown. 

• No gaps in time between deployment of like MDSs at the location. 

• A finite planning horizon that ends with date specified for the withdrawal of U.S. 

forces from Iraq. 

2.4 Supporting Data 

 Key to structuring the experiment for this research was being able to categorically 

define differing levels of demand and unit price, in addition to obtaining relative 

consumption and leveling information for all consumable items stocked at Balad AB.  

The following data sources were used to capture data pertinent to the model’s input 

parameters. 
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• A COLT input file (n = 9,975), dated 25 Mar 2011, obtained from the 735th 

SCOG by way of the 402nd SCMS at Wright Patterson AFB 

• A LIMS-EV download of the item records for all inventory stock at Balad AB on 

25 Mar 2011 (n = 33,257) 

• An RSP detail listing for items in High Priority Mission Support Kits at Balad AB 

on 25 Mar 2011(n = 19,968) 

• An inventory transaction history report, obtained from LIMS-EV, of all issues and 

due-outs at Balad AB between the dates of 25 Sept 2009 and 25 Mar 2011 

(n=23,071) 

Total records from all combined data sets equaled 86,271, but not all records were 

pertinent to the research.  Records had to be categorized, filtered, and linked to obtain a 

final data set that represented currently demanded DLA-managed consumable items 

supported by RSP inventories.  To provide insight on how the final data set was obtained, 

a brief description of how data was categorized, filtered and linked is provided. 

The data filtering and consolidation of information was made possible by using 

the Microsoft Access software program to the link the different data sources and querying 

for specific data points.  Of the 33,257 item records captured for Balad AB, only 25,580 

were items with a expendability-recoverability-reparability code of XB3 and a budget 

code of 9 (consumable item).  Of those items identified as a consumable items, 91% (n = 

23,192) had a routing identifier code classifying DLA as the source of supply and of 

those items only 8,318 had some type of demand registered in the previous 18 months.  

2.4.1  Resulting Data Set 
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When linking these 8,318 records to the 735th SCOG’s COLT input file and to the RSP 

detail listing, the resulting dataset numbered 4,842 item records.  Filtering was applied to 

this data to narrow our final data set to a predetermined supported mission design series, 

F-16 aircraft.  The resulting data set numbered 1,166 records.  These item records were 

then divided between MIC-1 and non-MIC 1 records to achieve a commonality to the 

inventory drawdown situation at Balad AB. 

Being able to categorically assign items to different categories of demand 

frequency, demand size and unit price was necessary to the research’s experiments.  

Categorical assignment of data was conducted on the 8,318 records identified as DLA-

managed consumable items possessing some type of registered demand in the previous 

18 months.  Categories for demand frequency, demand size and unit price were 

determined by ranking that relative factor in relation to every other item and then 

dividing items based on quartile boundaries as shown in Table 2.  For example with this 

methodology all items with a relative factor ranking between and including a value 1 and 

2080 were put in the “Low” category. 

2.4.2  Assignment of High, Mid-High, Mid-Low and Low Categories 

Table 2.  Quartile boundaries for data categorization 

Quartile Value 
Min 1 
Q1 2080 
Q2 4160 
Q3 5239 

Max 8318 
IQR 4160 
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 The categorical assignment of demand frequency was made possible by 

computing an item’s DDFR from data provided in an item’s record.  DDFR is a 

quantitative calculation that captures the daily average of requests for a certain item 

(DAF, 2011).  The use of DDFR allows for the determination of how fast demands arrive 

into the supply system.  Essentially, it is an 18-month moving average, but its formula 

involves the use of three moving windows of time.  It is calculated by dividing the 

aggregate sum of demands occurring in three rolling window periods –the current six 

month period, ND(CP); seven and 12 months ago, ND(1PSM); 13 and 18 months ago, 

ND(2PSM) – by a time period defined by as the difference between the current date (CD) 

and the item’s date of first demand (DOFD).  The denominator of this formula has a 

minimum value of 365, to ensure that at least 2 customer demands register a significant 

value, and a maximum value of 540.  The formula for DDFR is  (ND(2PSM) + 

ND(1PSM) + ND(CP))/(CD – DOFD)  . 

2.4.3  Categorical Assignment of Demand Frequency Rates  

 The number of demands in each period and the DOFD were obtained using data 

provided in an item’s record.  The date of 25 Mar 2011 was used as the current date since 

the item record was pulled for that date.  Using these pieces of information, a DDFR was 

computed for all consumable items.  Using categories based off of the previously 

described quartile computations, all consumable items were divided into four categories – 

high, mid-high, mid-low, and low.  These four categories provided a simple, yet 

effective, way to categorically assign the frequency of demands for an item.  The 
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quartiles, categorical assignments, and simple descriptive statistics for demand frequency 

rates for the 8,138 demanded DLA-managed consumable items are provided in Table 3.   

 

Table 3.  Quartile, Categorical Assignment and Descriptive Statistics for DDFR 

Categorical Assignment Daily Demand Frequency 
Quantile Item Count Grouping Max μ Min σ 

Min <= x <= 2080 2080 Low 0.0019 0.0019 0.0018 0.0000 
2081 <= x <= 4160 2080 Mid-Low 0.0027 0.0024 0.0019 0.0003 
4161 <= x <= 6239 2079 Mid-High 0.0051 0.0034 0.0027 0.0006 
6240 <= x <= 8318 2079 High 0.1238 0.0103 0.0051 0.0092 

The categorical assignment of demand size was made possible by computing an 

items’ DDR from data provided in an item’s record.  DDR is a quantitative calculation 

that computes the average quantity of an item demanded daily.  It allows for the 

determination of the size of each arriving demand into the supply system.  DDR is 

calculated by dividing the total quantity of an item requested, known as the cumulative 

recurring demand (CRD) factor, over a time defined by subtracting an item’s DOFD from 

the current date.  The minimum amount of time used in the DDR computation is 

constrained to 180 days, while the maximum time is set to 540 days.  Due to an 

annualization process conducted in the months of September and March, the CRD 

quantity of an item is always based on the most recent 365-day period.  In addition, an 

item’s DOFD is also annualized at the same time by resetting it to a date 365 days before 

the date of the annualization process.  The formula calculating an item’s DDR is  

CRD/(CD-DOFD)  . 

2.4.4 Categorical Assignment of Demand Size 
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The CRD quantity and the DOFD values were obtained using data provided in an 

item’s record.  The date of 25 Mar 2011 was used as the current date since the item 

record was pulled for that date.  Using these pieces of information, a DDR was computed 

for all consumable items.  Using the same quartile computations used to categorize an 

item’s DDFR, DDRs for items were divided into four categories – high, mid-high, mid-

low, and low.  The quartiles and categorical assignments for daily demand rates for the 

8,138 demanded DLA-managed consumable items are provided below.   

Table 4.  Quartile, Categorical Assignment and Descriptive Statistics for DDR 

Categorical Assignment Daily Demand Rate 
Quantile Item Count Grouping Max μ Min σ 

Min <= x <= 2080 2080 Low 0.0048 0.0028 0.0019 0.0009 
2081 <= x <= 4160 2080 Mid-Low 0.0111 0.0070 0.0048 0.0018 
4161 <= x <= 6239 2079 Mid-High 0.0333 0.0187 0.0111 0.0062 
6240 <= x <= 8318 2079 High 53.3077 0.2292 0.0333 1.2804 

The categorical assignment of unit price used the same quartile computations, 

dividing unit price into four categories – high, mid-high, mid-low, and low.  The quartiles 

and categorical assignments for the unit price for the 8,138 demanded DLA-managed 

consumable items are provided below.   

2.4.5 Categorical Assignment of Unit Price 

Table 5.  Quartile, Categorical Assignment and Descriptive Statistics for Unit Price 

Categorical Assignment Unit Price 
Quantile Item Count Grouping Max μ Min σ 

Min <= x <= 2080 2080 Low $1.99 $0.67 $0.01 $0.55 
2081 <= x <= 4160 2080 Mid-Low $13.71 $6.41 $1.99 $3.31 
4161 <= x <= 6239 2079 Mid-High $96.53 $39.97 $13.72 $22.35 
6240 <= x <= 8318 2079 High $45,696.75 $1,116.71 $96.54 $2,636.67 
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 Of the 1,166 F-16 parts identified on the Balad AB item record supported by RSP 

levels, over 679,000 different combinations would have to be run to compare all different 

combinations of parts.  Additionally, each part, due to model design, could have 18 

different parameters.  The differing of parameters would complicate the experiment and 

thus cause further uncertainty into what factors truly affect the response variables of 

interest.  It was decided that of the 18 parameters, only 4 parameters would differ – unit 

price, DDFR, DDR and VOD.  These three parameters allow the research to be 

conducted within reasonable bounds under which to study the differing drawdown 

policies.  The determination of what levels of the differing part parameters to model were 

made under the previously described categorical assignment of item factors.  Within each 

quartile different parts were picked that could provide a reasonable estimation of demand 

and unit price.  The following table provides a listing of the four parts chosen.  It should 

be noted that in following analysis of various responses of interest, the results of the 

items 3 and 4 were omitted as the DDFR and DDR values were such that substantial 

amounts of demand or results failed to be produce.  These findings will be addressed as 

future research in Chapter 4. 

2.4.6 Part Mix 

Table 6.  Listing of Selected Parts 

Item No. NSN Nomenclature DDFR DDR VOD Unit Price 
1 2620-01-157-3821 F-16CD NOSE TIRE DESERT 0.0444 0.2926 2.6 744.59 
2 5331-01-007-4898 PACKING PERFORMED 0.0314 0.8482 39.5 1.44 
3 1560-01-124-6137 STRUT, AIRCRAFT 0.0018 0.0019 1.84 749.58 
4 5310-01-057-5689 WASHER MS21206-C4 0.0018 0.0019 3.87 0.04 

 



37 

 Individual demand sizes are assumed to follow a negative binomial distribution 

whose mean is equal to a part’s DDR divided by its DDR and whose variance is equal to 

the VOD value calculated from the 25 March 2011 item record.  Since a part’s DDR is a 

measure of the quantity of the item used daily dividing this by DDFR gives a reasonable 

approximation of individual demand size.  The VOD of an item is calculated using three 

factors – an item’s cumulative demand quantity (CDQ) , cumulative demand quantity 

squared (CDQ2) and the number of days since the item’s DOFD.  An item’s CDQ value 

is number of item units ordered by a customer, while an item’s CDQ2 value is the sum of 

all CDQ squared values (DAF, 2011).  An item’s CDQ value is collected separately from 

an item’s CRD value even though they both represent the same data due to a difference in 

the date at which CDQ data collection started (DAF, 2011).  Representative examples of 

these calculations are represented equations 2.1 and 2.2. 

2.4.7 Modeling Demand Size 

𝑬(𝑫𝒆𝒎𝒂𝒏𝒅 𝑺𝒊𝒛𝒆) =  .𝟖𝟒𝟖𝟐 𝒖𝒏𝒊𝒕𝒔 𝒅𝒆𝒎𝒂𝒏𝒅𝒆𝒅
𝟏 𝒅𝒂𝒚

÷ .𝟎𝟑𝟏𝟒 𝒅𝒆𝒎𝒂𝒏𝒅𝒔
𝟏 𝒅𝒂𝒚 

≅ 𝟐𝟕 𝒖𝒏𝒊𝒕𝒔/𝒅𝒆𝒎𝒂𝒏𝒅   (2.1) 

𝑽(𝑫𝒆𝒎𝒂𝒏𝒅 𝑺𝒊𝒛𝒆) =  
𝑪𝑫𝑸𝟐−𝑪𝑫𝑸

𝟐

𝒏
𝒏

=
𝟐𝟏,𝟕𝟔𝟒−𝟒𝟓𝟖

𝟐

𝟓𝟒𝟎
𝟓𝟒𝟎

≅ 𝟑𝟗.𝟓 (2.2) 

 The model was run over different sizes of supported aircraft fleets – 12, 24, 36.  

Multiples of twelve were used to represent differing numbers of standard six-ship 

deployment packages.  Historical sortie data for Balad AB identifies an average of 24 

aircraft flying sorties into and out of Balad AB from Jan 2009 to October 2010.  Using 

2.4.8 Fleet Sizes 
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this data, fleet sizes of 12, 24, and 36 were selected to provide a representative number of 

aircraft supported during the drawdown phase of a base.  

 The two drawdown policies were implemented at differing times as demonstrated 

in Figure 5.  Within the context of this experiment, the commonality of time between the 

two plans is important to the understanding of which drawdown plan performs better 

under similar circumstances.  Comparing EDQ plan 14 months out from base closure 

against the Maximum ASL plan 9 months out from Balad AB’s closure would constitute 

an unacceptable level of comparison.  To gain commonality over measures of 

performance, data was only captured during the simulation time representing the period 

from March 2011 to December 2011.  Capturing data earlier than this period could 

possibly skew the results towards a favoring of the maximum adjusted stock level plan 

even though it wasn’t implemented until March 2011.  

2.4.9 Period of Study 

Additionally, the period of study covers different drawdown timelines of aircraft. 

Aircraft in the model redeploy according to one of two timelines, 6 or 12 months, and at a 

whole integer factor that would result in zero aircraft remaining the end of a model 

replication.  For example, a fleet size of 24 aircraft under 12-month drawdown timeline 

would be taken out of the model at a rate of 2 aircraft every month. 
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Mar 03 – Jul 10 Aug 10 Sep 10 – Feb 11 Mar 11 Apr 11 – Nov 11 Dec 11

EDQ Plan Period

Max ASL Plan Period

Build-up & Sustainment 
Operations at Balad AB

Leveling drawdown plan 
applied to Balad AB 

inventories

Inventory levels reduced through 
leveling drawdown plan

Non-MIC1, BC9 items 
supported out of RSPs until 

base closure

Levels directed to zero on non-
MIC1, BC9 items and MIC1, BC9 

items w/zero OH balance

Balad AB closed

 

Figure 4.  Timeline of Drawdown Plans 

 Through the variation of inventory policies, drawdown timelines and fleet sizes, 

the developed model will produce a variety of responses of interest over the period of 

study.  Variability of the number of backorders and backorder quantities between the 

different levels of factors will provide insight into which inventory policy provides better 

service levels in different settings.  

2.4.10 Data Generation 

2.5 Verification and Validation 

In order to substantiate the developed model, different validation and verification 

techniques were utilized to ascertain the model’s appropriateness to the system in study.  

Independent opinions were sought from AFMC analysts at the 402 SCMS to ensure the 

model reasonably represented the nature of the USAF supply system.  Results of the 

model were compared to that of models utilized by these analysts to solve real-world 
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consumable supply calculations.  The feedback, suggestions and comments of these 

analysts were key in making sure the coding in the model was implemented correctly. 

Since the developed model simulated two inventory policies, of which one was never 

enacted, the validation and verification of the model against historical data proved 

impractical.  Nonetheless, the output of the model’s COLT logic was compared to 

outputs from spreadsheet tool used by AFMC analysts to provide a degree of validity. 

2.6 Experimental Design and Methodology 

 The focus of this study is to measure the supply service levels over time of 

different inventory reduction policies which could be utilized to support the final months 

of a contingency.  Based on this goal, the response variables of total number of backorder 

occurrences and total quantity of backorders will be studied under different levels of the 

independent factors of inventory policy and aircraft redeployment rates for three different 

sizes of aircraft fleets.  In this research, we only consider customer-related backorders 

resulting from insufficient on-hand levels of stock, not backorders resulting from internal 

supply system actions. 

 The factor of inventory policy is varied at two levels – one level representing the 

Maximum ASL plan and the other level representing the EDQ plan.  The factor of 

drawdown timeline is varied at two levels - 6 and 12 months, while aircraft fleet sizes are 

varied at three levels (12, 24, and 36) for 3 different experiments each with 4 treatments.  

An example of the treatment levels for the fleet of 12 aircraft is presented in Table 7 

below. 
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Table 7.  Treatment Levels for 12 Aircraft 

Experiment Design Drawdown Timeline 
6-Months 12-Months 

Inventory Policy EDQ Plan Treatment 1 Treatment 3 
Max ASL Plan Treatment 2 Treatment 4 

 

The developed agent base model uses agents, representing aircraft, to generate 

inventory demands.  When compared to the common metrics of the Air Force supply 

system, this methodology is much more granular as the Air Force supply system 

computes metrics at a holistic level for the entire demand of one item, not the per aircraft 

demand.  Additionally, Air Force supply statistics and deployed aircraft fleet size 

continuously change over time complicating the ability to relate the generation of demand 

to any one size of aircraft fleet.  However, we can reasonably assume that the generation 

of inventory demand is a function partially based on aircraft fleet size.  This assumption 

allows us to form the hypothesis that larger aircraft fleet sizes will generate demand more 

frequently in our model. 

Two primary responses were gathered to measure the differing levels of factors and 

their impact.  These responses are: 

2.6.1 Responses of Interest 

• Total number of backorders 

• Total backorder quantity 

Capturing the number of stockouts and the number of units backorder allow for the 

determination of each inventory policies’ maximization of service level and its ability to 

satisfy customer demand  in a timely manner (Peterson, Pyke, & Silver, 1998). 
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The differentiation in the mean response values of the differing treatments for 

each fleet size is analyzed with an Analysis of Variance (ANOVA) technique.  The 

ANOVA technique allows for the analysis and testing of the statistical significance 

between the mean response values of each of the twelve treatments.  Additionally, it 

allows for the effects of the individual factors and the interaction between factors to be 

investigated.  The ANOVA techniques provide insight on how the differing inventory 

policies perform for different fleet sizes redeploying at different rates.  It is assumed that 

the responses of interest will decrease in the treatments whose factors include an 

inventory policy of EDQs and a drawdown timeline of 12 months.  The ultimate goal of 

using the ANOVA method is to determine if a preferred plan exists for differing fleet 

sizes undergoing different drawdown rates. 

2.6.2  Proposed Statistical Measures 

An ANOVA for three two-factor factorial experiments will be utilized.  The 

validity of the ANOVA method results is predicated by the following three assumptions. 

• The responses of each treatment level must be normal. 

• The variance of the responses between treatment levels must be equal. 

• Each treatment must be a random and independent sample. 

The verification of these assumptions is required through statistical measurements to 

substantiate the study’s results.  The homogeneity of variances between treatment levels 

is tested by the Levene’s test for equality of variances, while the normality of responses is 

determined by fitting each treatment’s responses to a normal distribution curve and 

testing for a goodness of fit (GoF) with the Wilk-Shapiro test statistic calculated by the 
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software package JMP.  Both the test for homogeneity of variance and normality will be 

conducted using a significance level of 0.05.  The independence of each treatment is 

assumed valid as each treatment is run independently with a unique random number 

stream.    

2.7  Results and Analysis 

 Responses for each design point were produced by conducting individual 

simulations using a unique random seed generated by the default Anylogic© random 

number generator.  The simulation was run at each design point as an individual Monte 

Carlo experiment of 31 replications to satisfy the assumptions of independence and 

normality.  The use of Monte Carlo experiments ensure the generation of random 

numbers, while the number of replications satisfies the sample size requirements of the 

Central Limit Thereom (Vogt, 2005). 

 The use of the ANOVA technique requires the satisficing of the three previously 

mentioned assumptions.  The Shapiro-Wilk goodness-of-fit test was used to evaluate to 

distribution of responses for each treatment.  Table 8 provides the results of each 

treatment’s test as generated by the JMP software package.  A p-value of less than 0.05 

indicates that the test’s null hypothesis of the distribution being normal must be rejected. 

2.7.1  Verification of ANOVA Assumptions 
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Table 8.  Shapiro-Wilk Test Results for Responses of Interest 

Treatment Total DUOs Total DUO Qty 
No. Inventory Policy Drawdown Timeline Fleet Size p-value p-value 
1 Max ASL = 0 6 months 12 acft 0.01 0.0001 
2 Max ASL = 0 6 months 24 acft 0.0005 0.0022 
3 Max ASL = 0 6 months 36 acft 0.07* 0.0014 
4 EDQ 6 months 12 acft 0.0001 0.0001 
5 EDQ 6 months 24 acft 0.001 0.0001 
6 EDQ 6 months 36 acft 0.0001 0.0001 
7 Max ASL = 0 12 months 12 acft 0.0001 0.0001 
8 Max ASL = 0 12 months 24 acft 0.0141 0.0001 
9 Max ASL = 0 12 months 36 acft 0.0264 0.0006 
10 EDQ 12 months 12 acft 0.0001 0.0001 
11 EDQ 12 months 24 acft 0.0001 0.0001 
12 EDQ 12 months 36 acft 0.0001 0.0001 

* - Meets the assumption of normality at α=0.05 
 

As indicated in Table 8, the assumption of normality does not hold in a majority 

of the treatments.  Additionally, the assumption of variance homogeneity across the 

treatments must be verified.  Since the proposed experiment design called for using 

ANOVA to measure the difference in treatments within each fleet size, the variance of 

the treatments is considered at this level.  Using the Levene’ s test for equality of 

variances in the JMP software package, it was determined that there was sufficient 

evidence to conclude that the variances among the treatments were not equal (p-value < 

0.0001).  These violations of ANOVA assumptions requires the use of statistical 

measures that do not rely on normality or the equality of variances.  

 The violations of ANOVA assumptions complicate the statistical analysis of the 

developed model.  These violations are probably caused by the use of discrete counts of 

the response variables, rather than ensemble (moving) averages, to conduct the 

2.7.2  Proposal of New Statistical Measures 
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comparisons.  The preferred alternative to the proposed ANOVA technique would a non-

parametric method of multiple comparisons.  A Kruskal-Wallis (K-W) test followed with 

the Mann-Whitney U test for pairwise comparisons was chosen to evaluate differences 

between the two inventory policies under the conditions of non-normality and unequal 

variances.  The K-W test is a non-parametric, or distribution free, test based on ranks of 

sample observations that tests a null hypothesis for equality of population means 

(Newbold, Carlson, & Thorne, 2010).  As a non-parametric test, it’s only assumption is 

that the sample’s observations be independent which has been previously proven.  The 

Mann-Whitney U Test compares two independent random samples to detect differences 

in the central location of two population distributions (Newbold, Carlson, & Thorne, 

2010).   

 A single K-W test on a categorical grouping of inventory policy and drawdown 

timeline factors was conducted to evaluate differences among the policy and timeline 

factors for an aircraft fleet size of 12 on median change in the number of total backorders 

and total backorder quantities.  The testing for the response variable of total backorders 

was statistically significant with  𝑝 < 0.0001 as was the test for total backorder 

quantities with 𝑝 < 0.000.  These results indicate there is a statistically significant effect 

on both response variables due to the changes in the inventory policy and/or the 

drawdown timelines.  Further testing is required to quantify specific differences. 

2.7.3  Results for Fleet Size of 12 

Post hoc testing was conducted using the Mann-Whitney U test with a Bonferroni 

approach at a family-wise Type 1 error rate of 0.05 and individual Type 1 error rate of 



46 

0.0083.  Table 9 displays these tests along with each test’s individual p-value.  While the 

full complement of tests under the Mann-Whitney U technique are provided, the true tests 

of interest are those that compare different design points in which only one independent 

variable is alternated – drawdown timeline or inventory policy.  Focusing our attention on 

those tests leads to insights that help differentiate the performance of each plan.   

The Mann-Whitney U tests of the different inventory policies under similar 

drawdown timelines indicate a significant difference in the total number of backorders 

and backorder quantities.  The results demonstrate that the EDQ plan outperforms a 

maximum ASL plan with less backorder occurrences and smaller backorder quantities 

whether the drawdown timeline is 6 or 12 months.  When comparing the same inventory 

policy under different drawdown timelines our results differ depending on the inventory 

policy being study.  Under an inventory policy of maximum ASLs, our results indicate 

that backorders and backorder quantities will increase when supporting a shorter 

drawdown timeline.  These results imply that a speculation strategy in which we count on 

future demand to not exceed expeditionary supply levels is more likely to cause 

occurrences of backorders.  

 In the case of the inventory policy of EDQs, the tests did not report a statistically 

significant difference in response measurements between a 6-month redeployment and 

12-month redeployment.  Given the inventory behavior of our model, these results can be 

reasonably expected as the EDQ plan keeps assets available longer and doesn’t change 

asset levels until such a time when the computed EDQ level is less than regular level 

computational values using the COLT technique.  The results imply that a strategy of 

postponement where we slightly delay shipment of excess stock based on a reasonable 
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expectation of future demand exceeding expeditionary levels of stock result in less 

backorders.  When this implication is taken in consideration with the fact the EDQ plan 

still zeros out stock levels 2 months before the base closure, the conclusion that can be 

formed is that an inventory policy of EDQs not only maintains adequate levels of supply 

support but also reduces stock in a manner that provides time for the redeployment of that 

stock.  The caveat to this conclusion is that all other planning factors remain constant 

over time. 

A final note on the results should be made regarding the comparison of the EDQ 

inventory policy supporting a 6-month redeployment and the maximum ASL plan 

supporting a 12-month redeployment.  Statistically insignificant results are reasonably 

expected since the maximum ASL inventory policy in this scenario will be supporting 

less aircraft during the period of study than the EDQ policy.  The results of all tests can 

be found in Table 9. 

Table 9.  Mann-Whitney U Test Results for 12 Aircraft 

Response Design Point -Design Point p-value 

Total 
Backorders 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0003* 
6-Months/Max ASL 12-Months/Max ASL 0.0045* 
6-Months/EDQ 12-Months/EDQ 0.0169 
6-Months/EDQ 12-Months/Max ASL 0.1648 

Total 
Backorder 
Quantities 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0004* 
6-Months/Max ASL 12-Months/Max ASL 0.0071* 
12-Months/Max ASL 12-Months/EDQ 0.0021* 
6-Months/EDQ 12-Months/EDQ 0.0421 
6-Months/EDQ 12-Months/Max ASL 0.2808 

* - Statistically significant at α*=0.0083 
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The box plots of Figure 6 provide a side-by-side comparison of the tests for each 

response variable of interest which can be used to clarify Table 9.  The analysis of these 

plots should be made in light of the model’s limitation of simulating data for only two 

parts.  USAF weapon systems are often supported by hundreds of consumable parts.  

Since backorders in the model were produced by the demand for two competing parts, an 

extrapolated conclusion should be made that the ASL plan would generate even more 

backorders for a greater number of modeled parts.  Additionally, it can be reasonably 

assumed that an EDQ plan for additional parts would result in less backorders and better 

supply service levels overall. 

 

   

Figure 5.  Box Plots for 12 Aircraft 

 In addition to a fleet size of 12 aircraft, the differing inventory policies were also 

studied at fleet size levels of 24 and 36.  Single K-W tests on total backorders and total 

backorder quantities proved significant under each respective fleet size with p < 0.0001 

2.7.4  Results for Fleet Size of 24 and 36 
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for both levels of fleet sizes.  Post hoc testing with a family-wise error rate of 0.05 

revealed that similar results to those achieved for a fleet size of 12.  The typical number 

of experienced backorders and sizes of backorder quantities increase with an inventory 

policy of maximum ASLs supporting a shorter drawdown timeline (6-months).  These 

results indicate that supply service levels, based solely on the merit of backorder 

occurrences and size, increase with a linear drawdown of levels.  Additionally, the results 

provide insight that an EDQ plan will perform comparably over both shorter and longer 

drawdown timelines.  The results of the pairwise testing for each respective fleet size can 

be found in Appendix S. 

2.8  Conclusions 

 Simulation models allow for both statistical inferences and generalizations of 

overall system performance.  The results presented provide a generalization of how 

differing inventory reduction plans would perform under representative demand trends 

and differing rates of aircraft redeployments.  Analysis among the different inventory 

reduction policies proved statistical significant differences which lend credibility to their 

relevance.  The analysis, under the stated assumptions, indicates that the plan developed 

by the GLSC would have created minimal backorder occurrences compared to a plan of 

maximum ASLs.  The developed model and subsequent analysis also indicate that 

backorder occurrences in this situation are magnified under shorter redeployment 

timelines.  The statistical results may prove beneficial to USAF supply and senior leaders 

in helping understand how to better reduce the service’s logistical footprint while 

maintaining high levels of operational capability.  More importantly, it is hoped that the 
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results form a foundation and provide validity towards inventory reduction policies in 

future contingencies. 
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3.  Case Study 

Evaluation of Inventory Drawdown Policies for Balad AB 

3.1 Introduction 

 “Our biggest challenge was getting the mission done – defending the base, 
providing top cover for U.S. Forces-Iraq and assisting our Iraqi hosts – while 
simultaneously drawing down our Airmen and equipment.”   

Brigadier General Kurt Neubauer 
332 Air Expeditionary Wing 
Commander 

 
The year of 2011 marked significant changes in the operations of the United 

States Air Force.  On August 1, 2011, the United States Congress passed the Budget 

Control Act of 2011, mandating $487 billion dollars in defense budgetary cuts.  On 

December 16, 2011 the United States Air Force (USAF) flew its final sortie over the 

country of Iraq.  While the budgetary cuts didn’t immediately impact operations in Iraq, it 

strengthened the USAF’s resolve to maintain readiness while becoming fiscally 

responsible.  The quandary of maintaining the highest levels of support within tight 

budgets is a constant burden under which today’s supply chains operate.  It is also an 

issue that the Department of Defense, and subsequently the USAF, will surely face within 

the coming years as military forces are withdrawn from Afghanistan.  While a majority of 

the operational Air Force is still engaged in combat operations over Afghanistan, the Air 

Force Logistics Management Agency (AFLMA) was tasked by the commander of the 

USAF’s Global Logistics Center (GLSC) to study how well the supporting supply chain 

performed in sustaining operations while decreasing inventories at the conclusion of its 

mission in Iraq.  Specifically, AFLMA was asked to document the process and measure 

the success of the current drawdown effort at Balad Air Base AB.  These lessons learned 
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would then be used for subsequent drawdown efforts.  To gain a baseline for what 

AFLMA was tasked to study, some background must be given on the methodologies 

implemented at Balad AB to reduce its inventory before the closing of the base.     

In the years 2010-2011, Balad AB underwent a transition from a contingency base 

operating on sustainment stock levels to an expeditionary base operating out of RSPs 

until it was ultimately transferred back to the nation of Iraq.  Balad AB had been 

operating with normal peacetime levels of stock, to include inventory in both a primary 

operating stock (POS) and in readiness spares kits (RSPs), as studies in the past had 

shown that aircraft supportability at contingency base locations improved when 

additional levels of stock were applied over and above stock levels contained in RSPs 

(Hunt, 2011).  A plan to reduce stock over 14 months was developed by the GLSC that 

aimed at gradually reducing stock levels by applying a scaling factor to an item’s daily 

demand rate (DDR) (Fulk D. A., Balad Levels Drawdown Plan, 2011).  The goals behind 

this plan were threefold:  ensure the preservation of equipment accountability, maximize 

weapon system availability to the very end of operations, and support an efficient and 

effective base closure effort (Fulk D. A., Balad Levels Drawdown Plan, 2011).  As the 

plan progressed, on hand stock and item stock levels decreased as an item’s DDR 

decreased. 

 In early 2011, Air Force Central Command (AFCENT), with Air Staff 

concurrence, issued a directive a change to the inventory drawdown plan on non-mission 

capable (MIC) 1 consumable items and MIC 1 consumable items with zero on-hand 

balances (Fulk D. A., Balad Levels Drawdown Plan, 2011).  The directive zeroed out 

stock levels in the warehouse by overriding the items’ computed stock levels with the 
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establishment of maximum adjusted stock levels (ASLs).  Maximum ASLs act as a 

ceiling on item stock levels by restricting stock to no more than a specified amount 

(DAF, 2011).  The establishment of a maximum ASL with a value of zero caused the 

USAF supply system to not stock any additional quantities of the item above what was 

stocked in the RSP. 

 Ample research exists on how to maintain inventory levels under increasing 

demand over infinite time horizons.  In contrast to maintaining inventory support over an 

infinite horizon, a small number of studies in the past have been conducted focusing on 

inventory replenishment under the conditions of decreasing demand and finite horizons.  

These studies have focused on achieving optimal levels of inventory with mathematical 

models on products whose market demand has diminished due to obsolescence or whose 

product life cycle is fixed and experiences deterioration.  Barbosa and Friedman (1979) 

were a few of the first authors to explore this topic as they addressed the phasing out of 

electronic products in technology markets under the assumptions of a finite time horizon 

and demand function of time that eventually reaches zero.  Other studies explore differing 

demand trends such as exponentially declining demand (Ramani and Venkatraman, 1988; 

Hill, Smith and Omar, 1998;) and linear decrease in demand (Zhao, Yang and Rand, 

2000).  Although very applicable to increasing our knowledge of how to address 

inventory replenishment under decreasing demand, these studies can prove complicated 

for decision makers.  Little (2004) suggests that for a model to be of any use to a decision 

maker it should be simple, robust, easy to control and adaptable to different situations.   

The inventory situation experienced during Balad AB’s closure provides a unique 

opportunity to investigate inventory reduction methods.  It also provides an opportunity 



54 

to apply simulation methods as the USAF supply system is complex and alternative 

designs of inventory reduction policies require analysis (Carson II, Introduction to 

Modeling and Simulation, 2005).  This research develops an agent-based simulation 

model that can be used to study the differing inventory policies under differing factors.  

Moreover, this research aims at providing a foundation for inventory reduction for future 

closings of existing contingency locations.    

3.3 Supply Chain Inventory Reduction Simulation 

 This research develops an agent-based simulation model of the sustainment 

supply chain supporting Balad AB during its closure using the software AnyLogic®.  The 

developed simulation models inventory within both a POS and RSP source of stock.  

Within the model, four inventory management processes are patterned over time 

to gain an overall understanding of what factors significantly affect the topic of interest – 

the manner in which the inventory of a contingency operating base should be reduced 

back to expeditionary levels.  The first process conceptualizes how demands are placed 

on the supply chain at the air base.  The second process of the model represents the 

processing and fulfilling of customer demands by supporting POS and RSP inventories.  

The third process abstracts the logic of inventory management computations which 

underpin the management of USAF inventory.  Finally, the fourth process generalizes the 

resupply of inventory levels at the deployed operating base.  Figure 7 provides a 

graphical depiction of the four processes. 

3.3.1 Model Development 
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Figure 6.  Core Inventory Management Processes 

To simulate demand generation at a contingency base, various demand 

measurements for certain items were gathered from Balad AB’s item record through the 

Logistics Installations and Mission Support-Enterprise View (LIMS-EV) as well as 

historical supply transaction data obtained from the AFLMA.  Rather than generalizing 

demand parameters for multiple stock units, the demand factors of daily demand 

frequency rate (DDFR), DDR, and variance of demand (VOD) are used as inputs to an 

exponential and negative binomial distribution.  The exponential distribution is used to 

model demand interarrival times, while the negative binomial distribution is used to 

model demand sizes.   

Previous research has focused on non-MIC 1 items, but in this research focus is 

given on MIC-1 items.  The management of backorders in the USAF supply system 

amounts to basic ABC inventory management methods in that backorders are managed in 

a fashion where certain parts are given more attention than others.  Those parts that 

receive a majority of attention in the USAF inventory are those parts that cause aircraft to 
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become inoperable and are coded as MIC 1 items.  A hypothesis of this research is that 

what truly matters in the reduction of inventory at a contingency location is not whether 

the part is a MIC 1 or non-MIC 1 part, but the part’s demand characteristics such as 

DDFR and DDR.  The acceptance or rejection of this hypothesis should not be accepted 

as a recommendation to change the management of MIC-1 items, but it provides a 

suggestion that the focus of inventory redeployment efforts should be on an item’s 

demand characteristics. 

To study the various inventory reduction methods on MIC 1 consumable items the 

research and developed modeled focused on two parts, supported by F-16 RSP levels, 

that varied in cost, demand frequency, demand size and demand variance.  One part was 

selected out of a category of parts identified has having a high demand rate and high unit 

price, while the other part was selected out of a category of parts identified has having a 

high demand rate and low unit price.  Past research has indicated that parts of low 

demand rates fail to provide ample data for analysis.  Each part’s demand factors and unit 

price were within one standard deviation of the factor’s mean for the item record, dated 

25 March 2011, of stock units at Balad AB.  The variation in unit price is required to 

understand how the demand for low cost parts affects an inventory model’s behavior 

compared to the demand of a high-cost part.  The two parts modeled in the simulation are 

listed in Table 10. 

Table 10.  Listing of Selected Parts 

Item  NSN Nomenclature DDFR DDR VOD Unit Price 
1 2620-01-490-0713 RBL:  TIRE F-16 ACFT DESERT USE 0.0758 1.0944 16.89 $1,723.92 
2 5330-00-631-6649 SEAL PLAIN 0.0259 0.5611 32.49 $1.32 
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To provide a reasonable context under which to model drawdowns of inventory at 

a contingency location, the following assumptions were made: 

• Data obtained through AFLMA, the GLSC, and LIMS-EV is accurate and 

complete. 

• Demand interarrival times are assumed to be an exponentially distributed function 

of the item’s DDFR divided by a denominator equal to the average amount of 

aircraft flying sorties from Balad AB on 25 Mar 2011. 

• Demand size is assumed to be distributed according to the negative binomial 

function with a variance calculated using the VOD formula specified by AFMAN 

23-110. 

• RSP demand levels are non-demand based and POS levels are demand based.  

The RSP levels do not represent the actual levels of the items in RSP kits at Balad 

AB, but are modeled to provide a sense of realism in the model.  

• Bench stock is not modeled and assumed part of the POS inventory. 

• No cannibalization, lateral resupply or local sourcing of parts.  All parts are 

sourced from the designated source of supply. 

• No commonality exists among parts for different weapon systems. 

• Delays for inbound transportation of stock are modeled at two levels, but no delay 

exists for transportation of stock off base. 

• RSPs are filled with any excess items from the POS inventory during the 

drawdown phase of the base. 

• RSPs remain at the contingency location until the end of the drawdown. 
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• No gaps in time between deployment of like MDSs at the location. 

• A finite planning horizon that ends with date specified for the withdrawal of U.S. 

forces from Iraq. 

To substantiate a model within its domain of applicability and provide a high degree 

of accuracy in its results, validation and verification of the model has to be performed 

(Sargent, 2007).  Since the simulation attempted to understand general inventory policy 

behavior under different conditions and the policies under study had varying life spans, 

validation and verification took the form of discussion with AFMC supply analysts and 

output comparisons of model results to real-world analytical tools.  Additionally, certain 

replication outputs were compared to the stock unit’s item record to ensure that the model 

reasonably produced demand at a frequency and rate comparable to the actual situation 

faced at Balad AB.  

3.3.2 Model Validation and Verification 

Twenty-four aircraft are modeled as agents who generate demand based on a negative 

binomial distribution using the inputs of an item’s DDFR, DDR, VOD and unit price.  

Previous study results indicate comparable trends of supply support among varying fleet 

sizes.  Generation of demands for two modeled parts drive the system’s underlying 

demand leveling methodologies of Economic Order Quantity (EOQ) depth or Customer 

Oriented Leveling Technique (COLT) leveling.  The EOQ depth model is based on 

Wilson’s EOQ methods of achieving the lowest total cost in inventory, while the COLT 

3.3.3 Model Execution 
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methodology minimizes backorders and customer wait time under a marginal analysis 

approach (Gaudette, Blazer, & Alcorn, Managing Air Force Depot Consumables: The 

Big Picture, 2001).  These methods calculate demand levels for each part which then 

determine when replenishment orders are processed in the model.  Figure 8 presents a 

graphical representation of inventory behavior over time during a replication run of the 

model.  Upon a pre-defined timestamp, the model reduces inventory either gradually by 

using a linearly decreasing function of the item’s DDR or abruptly through the setting of 

a maximum ASL value of zero. 

 

Figure 7.  Model Behavior of Inventory Level over Time 

 The model is run over a simulated period of two and a half years per replication. 

For each scenario or inventory policy we performed 31 replications to satisfy the 

assumptions of independence and normality.  Initialization periods and data collection 

periods were pre-specified during the model initialization.  To achieve commonality 

between the plans of interest, the period of analysis was defined to a period between 31 

March 2011 and 31 December 2011.  This date corresponded with the timeframe that 

AFCENT directed setting the maximum ASL values on certain item’s to zero.  
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3.4 Analysis 

 This section provides the analysis of our model’s output when populated with 

parts of differing demand arrival and consumption rates.   

  Two responses of interest were identified for study in this model – an item’s 

customer wait time (CWT) and percentage of returnable inventory.  Both measures of 

interest were calculated as a long-run average over the model’s data collection period.  

CWT is readily accepted DoD supply performance metric and can be defined as the 

average amount of time that a customer has to wait for a backordered part.  The CWT of 

an item can be defined as the expected backorders (EBO) divided by an item’s DDR 

((DAF), 2002).   

3.4.1 Experimental Design 

𝑪𝑾𝑻 = 𝑬𝑩𝑶/𝑫𝑫𝑹  (3.1) 

The percent of returnable inventory is a measure more commonly used in profit-

oriented business , but has use in cost-oriented companies, such as the USAF, that want 

to know what proportion, in dollars, of its inventory can be returned to its suppliers 

(Bragg, 2004).  Using a metric such as this requires some manipulation for the study’s 

purpose.  The basic formula for this measure is provided in equation 4. 

% 𝒐𝒇 𝑹𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 = 𝑫𝒐𝒍𝒍𝒂𝒓𝒔 𝒐𝒇 𝒓𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚
𝑻𝒐𝒕𝒂𝒍 𝒅𝒐𝒍𝒍𝒂𝒓𝒔 𝒐𝒇 𝒊𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚

  (3.2) 

Applying the measure to the focus of this study, we manipulate the equation to the 

following formula. 

% 𝒐𝒇 𝑹𝒆𝒕𝒖𝒓𝒏𝒂𝒃𝒍𝒆 𝑰𝒏𝒗𝒆𝒏𝒕𝒐𝒓𝒚 = 𝑻𝑪(𝑶𝑯 𝑷𝑶𝑺)
𝑻𝑪 (𝑶𝑯 𝑷𝑶𝑺)+𝑻𝑪(𝑶𝑯 𝑹𝑺𝑷)

  (3.3) 
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where TC(OH POS) is the total cost of on-hand stock in the primary operating stock and 

TC(OH RSP) is the total cost of on-hand  stock in the RSP.  The total cost of on-hand 

stock is defined as the unit price of each item plus its holding cost and ordering cost.  

The measures of interest were analyzed under the effect of different inventory 

policies and aircraft redeployment timeline and rates.  Inventory policy factors include 

ordinal factors that identify the two plans used at Balad AB – setting a maximum ASL 

value to zero or the reduction of stock as a linear function of the item’s DDR.  Aircraft 

redeployment timelines were the ordinal factors of 6 and 12 months.  It is during this 

timeline that the 24-ship fleet would be deleted from the model in whole integers (4 ships 

per month for a 6 month redeployment and 2 ships per month for a 12 month 

redeployment).  CWT analysis is provided in the form of a full-factorial 22 experiment 

while the percentage of returnable inventory analysis, due to violations of normality and 

equal variances, was conducted using the non-parametric Kurskal-Wallis (K-W) test with 

post-hoc analysis generated by the Mann-Whitney U test. 

 Responses for each treatment level were based on the outputs of individual Monte 

Carlo experiments run over 31 replications.  The use of Monte Carlo experiments ensured 

the generation of independent samples, while the number of replications satisfies the 

sample size requirements of the Central Limit Theorem (Vogt, 2005).  Each replication 

was run for 2 and 1/2 years of simulated operations time with the first 21 months of data 

deleted.  The lengthy initialization period is required to stabilize the long-run average 

calculations of the simulated USAF supply system.  A data collection period of 9 months 

3.4.2  Results 
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was programmed to coincide with the amount of time for which the policy of instituting 

maximum adjusted stock levels was implemented at Balad AB.   

 Due to the marginal analysis COLT technique an insignificant amount of CWT 

data for part 2 was generated, so we utilize the data for part 1 to determine the differing 

factor level effects.  The Shapiro-Wilk test for normality of each treatment proved 

significant as indicated in Table 11.  Levene’s test for equality of variance indicated 

equal variances with a p-value of 0.3060. 

 
Table 11.  Shapiro-Wilk Test for Normality of CWT Response 

Treatment 
No. Inventory Policy Drawdown Timeline p-value 
1 Max ASL = 0 6 months 0.2259 
2 Max ASL = 0 12 months 0.2108 
3 EDQ 6 months 0.1658 
4 EDQ 12 months 0.3352 

 
 

Analysis of the full factorial 22 design of experiment was produced using Analysis 

of Variance (ANOVA) techniques which indicated the model was statistically significant,  

(p<0.0001), with all main effects and second-order effect statistically significant as well 

(p <0.0001).  Post hoc analysis conducted with Tukey’s Honestly Significant Difference 

test (see Figure 9) indicate the CWT response values are significantly different when 

maximum ASLs are implemented over longer redeployment timeframes.  We can 

interpret these results as CWT increases under an inventory policy of maximum ASLs 

supporting lengthy deployments.  Additionally, this test revealed no significant difference 

CWT values over both drawdown timelines under an EDQ policy and a 6-month 

drawdown timeline under an ASL policy.  In interpreting these results, one has to 

remember that the definition of CWT is the average amount of time a customer has to 



63 

wait for a backorder part.  These results imply that an EDQ policy over both short and 

long redeployment timelines would produce a CWT value similar to the value obtained 

under a maximum ASL policy for a 6-month drawdown.  It can be inferred that an EDQ 

policy, whether implemented for a short or long drawdown timelines, is a better strategy 

than a maximum ASL strategy for any drawdown timeline.  These results are likely as the 

use of a maximum ASL value is somewhat of a speculation strategy in that it is assumes 

future demand amounts will not exceed the stock on-hand in the RSP.  Finally, it should 

be noted that these results are for only two-parts due to model design.  In reality, USAF 

weapon systems are supported by hundreds of consumable parts.  It can be reasonably 

assumed that the modeling of additional parts would lead to the same general results – the 

EDQ plan would provide lower CWT than the ASL plan no matter the number of parts 

studied. 

 

Figure 8.  Summary of Tukey’s HSD Analysis of Customer Wait Time 

 A single K-W test was performed for each part modeled in the simulation to 

evaluate the differences among the inventory policies on the median change in average 

percentage of returnable inventory.  The K-W test for part 1 was significant, (p <

0.0001),  as was the K-W test for part 2, (p < 0.0001).  Post hoc testing to evaluate the 

pairwise differences between each grouping of inventory policy and drawdown timeline 

was conducted using the Mann-Whitney U test with a Bonferroni approach in controlling 
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for Type I errors with a family-wise error rate of 0.05.  The results of the pairwise tests in 

Table 12 indicate significant differences amongst the different comparisons. 

Table 12.  Mann-Whitney U Test Results for Percentage of Returnable Inventory 

Response Design Point -Design Point p-value 

Part 1 - % of 
Returnable 
Inventory 

6-Months/EDQ 12-Months/Max ASL 0.0011* 
6-Months/Max ASL 12-Months/Max ASL 0.0025* 
6-Months/Max ASL 6-Months/EDQ 0.8992 
6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/EDQ 12-Months/EDQ 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0001* 

Part 2 - % of 
Returnable 
Inventory 

6-Months/EDQ 12-Months/Max ASL 0.0001* 
6-Months/Max ASL 12-Months/Max ASL 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.8327 
12-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/EDQ 12-Months/EDQ 0.0001* 
6-Months/Max ASL 12-Months/EDQ 0.0001* 

* - Statistically significant at α*=0.0083 
  

The varied results of the Mann-Whitney U test do not make for intuitive 

conclusions, but there are a few insights that can be drawn by using this information in 

combination with the information obtained from the analysis of the CWT response.  The 

first insight is that for part 1 the inventory policy of EDQ when compared to an inventory 

policy of maximum ASLs under the same drawdown timeline not only maintained a low 

CWT metric, but it did so while retaining the least amount of stock possible at a 

statistically significant level.  The same inference can be made regarding part 2, even 

though we didn’t evaluate the measure of CWT but that was because it computed to less 

than two decimal places.   

The second insight that can be gleaned from the non-parametric K-W test is that 

the EDQ policy does lag in performance over longer drawdown timelines.  This inference 
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can be made when viewing the results of those tests that compare the EDQ inventory 

policy over different drawdown timelines.  This result is consistent with the logic 

programmed in the model since the EDQ plan is a function of an item’s DDR which is 

equivalent to an 18-month moving average.  The EDQ plan supporting a 12-month 

drawdown would not begin to bring levels down until the final months of the drawdown 

as indicated by the higher mean in the K-W test.  A feasible suggestion regarding this 

insight is to compute an item’s DDR over a smaller window as the contingency’s 

conclusion becomes more imminent.  This suggestion, though, has to be weighed with the 

costs associated with managing such a plan under changing conditions. 

3.5  Conclusions 

 This model and analysis explored the impacts of the differing inventory policies 

supporting various redeployment rates of supported aircraft.  Two inventory policies were 

studied – setting of a maximum adjusted stock level to a value of zero or the linear 

reduction of stock as a function of an item’s DDR.  The intent of this study was to gain 

further insight on which plan may better support the closure of contingency base while 

maintaining adequate levels of supply support to the warfighter.  The results provided 

significant differences and insights between the two plans.  The further examination of 

these two plans will aid in a conclusive strategy for future contingency base closures. 

 
 
 
 
 
 
 



66 

4.  Conclusion 

4.1 Introduction 

 This chapter provides a summary of the research performed during the course of 

examining the performance of different inventory policies supporting different fleet sizes 

undergoing varying rates of redeployment.  The chapter begins with a general overview 

of the thesis, followed by the findings and conclusions derived from the analysis of our 

simulation model’s output data.  The chapter concludes by providing a list of topics 

encountered during the course of this research that would be suitable for future study. 

4.2 Research Summary 

 This focus of this study was to develop an agent-based simulation to evaluate 

different inventory reduction plans that could be used to decrease inventory at bases 

operating in a contingency location.  The fundamental inventory management processes 

of USAF consumables were programmed and historical data was used to generate 

stochastic demands.  Constraining assumptions were made to bind the model and 

programming logic in a fashion suitable for analysis.  While agent-based modeling has 

been available for use during the past two decades, this model provides a novel approach 

and a broader understanding of factors affecting supply support in wartime environments 

not previously researched. 

 Furthermore, an additional examination was provided on how support to MIC 1 

coded items could be affected with various inventory reduction plans.  This analysis was 
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conducted using customer wait time as a measurement.  As this research addresses only a 

few approaches to studying supply support at contingency locations, many other 

approaches and factors should be studied to ascertain a higher degree of fidelity on 

different supply support plans and inventory management policies for future contingency 

base closures. 

4.3 Summary of Findings 

 In this section, the basic research questions posed in Chapter 1 will be addressed 

based on the analysis of data provided in Chapters 2 and 3.  The questions from Chapter 1 

are: 

1.  Should drawdowns, at the system level, of inventory at contingency locations be 
treated any differently than the redistribution of excess inventory at peacetime 
locations?  
 
 This question simply asks if basing an inventory drawdown plan off of an item or 

group of item’s DDR is better suited to drawing down assets and asset levels versus using 

the MCDDR technique described in AFMAN 23-110, Volume 2, Part 2, Chapter 19.  

There exists an inherit difference between the plan developed by GLSC and the formula 

for MCDDRs and MCDDFRs – the use of sortie information.  While the developed 

model did not explicitly utilize sortie information as an input or output parameter, the 

long-run behavior of each replication did provide some insight into the reduction of stock 

as a function of the DDR.  Long-run behavior indicated that reducing stock as a function 

of the DDR suffers from performance lags when the basic DDR formula from AFMAN 

23-110 is utilized.  Since the basic formula is an essentially an 18-month moving average 

this behavior should be expected.  In contrast, using the DDR to drive the decrease of 
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inventory levels creates a flexible plan that not only reduces stock but also maintains high 

customer support levels.  This point was alluded to by the GLSC when their plan for the 

Balad AB closure was developed (Fulk D. A., Balad Levels Drawdown Plan, 2011).  

Further testing is required to determine if the reduction of stock as a function of the DDR 

would perform any better than using the basic MCDDR and MCDDFR formulas in 

AFMAN 23-110.    

 
2.  Is there a statistical and/or practical difference among policies for reducing 
inventory levels in the final phases of a contingency operation? 
  
 The results of Chapter 2 and 3 indicate that there is a statistical difference 

between the two policies enacted at Balad AB.  According to statistical tests, the use of 

maximum ASLs is more likely to increase the median and mean number of backorders 

and backorder quantities.  Also, these tests indicate that the plan developed by the GLSC 

would minimize total backorders and backorder amounts over both 6-month and 12-

month redeployment timelines.  The model’s behavior indicates a practical significance 

among the differing policies in that use of maximum ASL, no matter the type of item, is 

somewhat of a speculation strategy in that we expect future demands to be no more than 

on-hand asset quantities contained within the RSPs.  According to the model’s behavior 

and output, this strategy is found lacking in support to aircraft fleets undergoing shorter 

redeployments. 

 
3.  What are appropriate measures to be used in evaluating policies for drawdown 
of inventory in a contingency environment? 
 
 The results of the study indicate that the answer to this question is a mix of 

metrics.  The use of CWT throughout the redeployment is still a requirement as 
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operations may have to be maintained up until the final day.  The study has found that a 

formula based on unused inventory remaining may provide a leading indicator of how 

well the USAF is achieving its objective of closing the base down in a reasonable 

fashion.  These are only two metrics and their use should be in conjunction with other 

supply metrics to form a better picture of the drawdown effort. 

 
4.  What parameters should guide inventory drawdowns in future contingency 
operations? 
 

This study focused on four parameters – DDFR, DDR, VOD, and unit price.  Of 

the four, an item’s DDR, VOD and unit price affected inventory behavior the most.  DDR 

and VOD accounted for the variation in demand sizes generated by the model.  Items 

with low DDRs and VODs failed to produce any substantial results for this study, while 

items with higher DDRs and VODs produced more backorders.  Also of interesting note 

was that items with lower unit prices performed reasonably better than those with higher 

unit prices.  This behavior should have been expected as the marginal analysis 

methodology used in COLT would rather prevent backorders for a cheaper part than an 

expensive part, but the extent to which unit price played a factor was somewhat 

astounding.  Unit price was the driving factor in the model failing to produce CWT 

values for low cost items.  In future contingencies, the use of an item’s DDR, VOD and 

unit price should be taken into consideration as these three parameters exhibited the 

tendency to affect the model’s performance the most. 
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4.4 Future Work 

The developed model has been programmed in such a manner that it provides 

flexibility for future studies.  The number of parameters available for modification 

provides opportunities for future studies to explore the impacts of various factors such as 

transportation, up-stream supplier stock availability and pertinent pecuniary costs that 

affect supply decisions.  The capabilities that have already been programmed thus 

decrease the time required to adapt the model to other studies.  As this model addresses 

only a certain type of part – consumables – there are additional areas of expansions that 

should be considered.  We suggest the following topics: 

• The modeling of sorties within the aircraft agent and the subsequent capture of 

sorties information generated by the agent. 

• The implementation of MCDDR and MCDDFRs based on sortie information. 

• The modeling of maintenance information to provide a more realistic picture of 

demand interarrival time. 

• The parameterization of differing RSP and DLA support levels within the model 

could allow for a more representative picture of a contingency supply chain. 

• The modeling or more than two parts within the model.  The marginal analysis 

technique performed by the COLT methodology compares a multitude of parts to 

derive levels of stock that minimize the over number of backorders and customer 

wait time. 

• The modification of the model to include better time-based averages such as 

average number of daily backorders. 
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 Substantial opportunities exist for the expansion of this study and future 

operations may necessitate an extension of a similar model.  The limitations in this model 

are solely of the author’s doing, not the methodology or software.  Few academic studies 

exist that explore inventory replenishment under decreasing demand with even fewer 

studies evaluating this topic utilizing agent-based modeling.  Additionally, the use of 

agent-based models in military research has still not matured to a level of common use.  

It is hoped that this simulation model and the subsequent analysis has provided insight 

into future inventory reduction plans and the applicability of an agent-based modeling 

simulation approach to understanding problems facing the Air Force. 
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Appendix A.  Model Descriptions and Default Values 

 
Parameter Description Default Value 

Item Unit Price The price per unit of the item. User defined 
Item Holding Cost Factor Factor to which is applied to a item’s unit price to 

determine its holding cost 
15% 

Item Holding Cost The cost to hold the stock in inventory.     .15 * Unit 
Price 

Item Demand Rate The item’s daily demand rate.  Daily demand rate is 
how much of an item is consumed on a daily basis. 

User defined 

Item Demand Frequency The item’s daily demand frequency rate.  Daily 
demand frequency rate is the average number of 
daily customer demands. 

User defined 

Item Variance of Demand The expected variation in demands for an item.  User defined 
SoS Order-Up-To-Level The level of stock to which the SoS’s inventory 

should be replenished with each replenishment order. 
User defined 

SoS Reorder Point The level of stock at which the SoS should place a 
replenishment order. 

User defined 

SoS Stock Availability An item’s stock availability.  This factor is used by 
the COLT computation model. 

User defined 

SoS Manufacturer Lead 
Time 

The time the SoS can expect to receive an item from 
their source of supply 

User defined 

ELRS POS Order-Up-To-
Level 

The level of stock to which the ELRS’ POS 
inventory should be replenished with each 
replenishment order. 

User defined 

ELRS POS Reorder Point The level of stock to which the ELRS’ POS 
inventory should be replenished with each 
replenishment order. 

User defined 

ELRS POS C-Factor A multiplier factor applied to the standard deviation 
of demand during replenishment. 

User defined 

ELRS POS Ordering Cost The cost to the ELRS of issuing a purchase order for 
the replenishment of an item’s inventory. 

User defined 

ELRS POS Order and Ship 
Time 

Average number of days between the placement and 
receipt of a replenishment order between the ELRS 
and SoS 

User defined 

ELRS POS Conditional 
Delay (CONDEL) 

 User defined 

ELRS POS Bench Stock Seventy-five percent of an item’s authorized bench 
stock.  This factor is used by the COLT computation 
model 

User defined 

ELRS RSP Order-Up-To-
Level 

The level of stock to which the ELRS’ RSP 
inventory should be replenished with each 
replenishment order. 

User defined 

ELRS RSP Reorder Point The level of stock to which the ELRS’ RSP 
inventory should be replenished with each 
replenishment order. 

User defined 

Aircraft Redeployment The date at which aircraft will start to be taken out of User defined 
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Start Date the model.  This date simulates the date at which 
aircraft would redeploy from the contingency base. 

Aircraft MDS Fleet Size The fleet size of the aircraft mission design series 
assigned to the contingency base. 

User defined 

Aircraft MDS Departure 
Factor 

The factor at which aircraft are taken out of the 
model.  This factor simulates the number of aircraft 
that would redeploy at one time from the contingency 
base. 

User defined 

Inventory Drawdown Start 
Date 

The date at which the inventory drawdown method is 
initiated for the ELRS’ POS. 

User defined 

Inventory Reduction Plan The plan to be implemented for the inventory 
drawdown.  The “Set Max ASLs = 0” option 
simulates the setting of a maximum adjusted stock 
level to a value of zero.  The “Set Levels = EDQ” 
option simulates setting stock levels on a monthly 
basis to a value equal to the daily demand rate times 
the number of months remaining times 30 days. 

User defined 

Inventory Computation 
Method 

The method by which order-up-to-levels and reorder 
points are calculated.  The “Base Level (Standard 
SLQ)” option calculates order-up-to-levels and 
reorder points with the base computations specified 
in AFMAN 23-110.  The “Centrally (COLT)” option 
simulates the calculation of reorder points with the 
COLT marginal analysis method. 

User defined 

ASL – Adjusted Stock Level 
COLT – Customer Oriented Leveling Technique 
EDQ – Expected Demand Quantity 
ELRS – Expeditionary Logistics Readiness Squadron 
POS – Primary Operating Stock 
MDS – Mission Design Series 
SoS – Source of Supply 
RSP – Readiness Spares Kit 
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Appendix B.  ELRS Receive Demand Process Flow and Java Code 

ELRS Receive Demand Process Flow 
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Figure 9.  ELRS Receive Demand Processing Logic 
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ELRS Receive Demand Process Java Code 
 
//Add agent demand to ELRS history arrays and update demand parameters 
//If the demand is for Part 1 - add the demand to the Part 1 history arrays and update 
its demand parameters 
if(msg.p == 0){ 
  

//Add demand and all of its parameters to the p0demand array and add the demand's 
time to the p0demandHistory array 

 p0demands.addLast(msg); 
 p0demandHistory.add(msg.agentDmdTime()); 
  

//Update the Date of Last Demand (DOLD) and Last Demand Amount for Part 1 
 DOLD[0]=msg.agentDmdTime(); 
 LastAmount[0]=msg.agentDmdQty(); 
  
 //Set text on the main screen 
 get_Main().txtp0_DOLD.setText(timeToDate(DOLD[0])); 
 get_Main().txtp0_DmdQty.setText(LastAmount[0]); 
  
 //Update the Date of First Demand (DOFD) for Part 1 
 update_DOFD(0, msg.agentDmdTime()); 
  
 //Update the total number of demands for Part 1. 
 ND[0]++; 
  
 //Calculate DDR and Cumulative Demand Values for Part 1 
 partStats[partStatsCounter][0] = msg.agentDmdTime(); 
 partStats[partStatsCounter][1] = msg.agentDmdType(); 
 partStats[partStatsCounter][2] = msg.agentDmdQty(); 
 partStatsCounter++; 
  
//If the demand is for Part 2 - add the demand to the Part 2 history arrays and update 
its demand parameters 
}else if(msg.p == 1){ 
 

//Add demand and all of its parameters to the p1demand array and add the demand's 
time to the p1demandHistory array 

 p1demands.addLast(msg); 
 p1demandHistory.add(msg.agentDmdTime()); 
 

//Update the Date of Last Demand (DOLD) and Last Demand Amount for Part 2 
 DOLD[1]=msg.agentDmdTime(); 
 LastAmount[1]=msg.agentDmdQty(); 
 get_Main().txtp1_DOLD.setText(timeToDate(DOLD[1])); 
 get_Main().txtp1_DmdQty.setText(LastAmount[1]); 
 
 //Update the Date of First Demand (DOFD) for Part 2 
 update_DOFD(1, msg.agentDmdTime()); 
  
 //Update the total number of demands for Part 2. 
 ND[1]++; 
   

//Calculate Cumulative Demand Values for Part 2 if time() < 365 days 
 partStats[partStatsCounter][0] = msg.agentDmdTime(); 
 partStats[partStatsCounter][1] = msg.agentDmdType(); 
 partStats[partStatsCounter][2] = msg.agentDmdQty(); 
 partStatsCounter++; 
} 
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Appendix C.  ELRS Stock Issue Process Flow and Java Code 

ELRS Stock Issue Process Flow 

Determine inventory 
position

Is POS on-hand balance 
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Figure 10.  ELRS Flowchart of Stock Issue Logic 

ELRS Stock Issue Process Java Code 

//Check for part 0 demands 
void  checkp0Demand() {  
 
// Determine Part 1's Inventory Position 
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - p0backOrders_ELRS(); 
 
//Update text on Main AO screen. 
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]); 
 
//Output Part identification and inventory status to transaction record. 
get_Main().TransactionRecord[1] = 1; 
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get_Main().TransactionRecord[3] = S[0]; 
get_Main().TransactionRecord[4] = s[0]; 
get_Main().TransactionRecord[5] = RSP_S[0]; 
get_Main().TransactionRecord[6] = RSP_s[0]; 
get_Main().TransactionRecord[7] = inventoryPosition[0]; 
get_Main().TransactionRecord[8] = onHand[0]; 
get_Main().TransactionRecord[9] = onHand_RSP[0]; 
get_Main().TransactionRecord[10] = onOrder[0]; 
get_Main().TransactionRecord[11] = p0backOrders_ELRS();  
     
 
while (!p0demands.isEmpty()) { // whileLoop 
       
//Grab the first demand and process it 
AgentDemand  p0demand = p0demands.getFirst(); 
 
//Output the timestamp and quantity of the demand to transaction record 
get_Main().TransactionRecord[0] = p0demand.agentDmdTime(); 
get_Main().TransactionRecord[12] = p0demand.agentDmdQty(); ; 
       
//Check if POS on-hand balance is greater than 0 
if (onHand[0] > 0) {  
         if (p0demand.q <= onHand[0]) { 
            //Fulfill complete order 
//Remove the demand from the queue 
p0demands.removeFirst(); 
 
//Decrease our inventory by the demand amount 
onHand[0] -= p0demand.q; 
 
//Add the transaction type, issuing stock and amount issued values to the transaction 
record 
get_Main().TransactionRecord[2] = 0; 
get_Main().TransactionRecord[13] = 0; 
get_Main().TransactionRecord[14] = p0demand.q;  
           } else { 
             //Issue Partial Order 
             
//Decrease demand amount by what there is on the shelf 
double p0dmdRemainder; 
p0dmdRemainder = p0demand.q - onHand[0]; 
 
 
//Zero out the on-hand inventory 
onHand[0] = 0; 
 
//Add the transaction type, issuing stock and amount issued values to the transaction 
record 
get_Main().TransactionRecord[2] = 1; 
get_Main().TransactionRecord[13] = 0; 
get_Main().TransactionRecord[14] = p0demand.q - p0dmdRemainder; 
 
//Create a new demand for the remainder of what couldn't be filled out of POS 
AgentDemand part0Demand = new AgentDemand(0, p0dmdRemainder, time()); 
p0demands.set(0,  part0Demand); 
 
//Out of stock - stop processing 
break; 
   }  
} else { 
       if (onHand_RSP[0] > 0) { 
          if (p0demand.q <= onHand_RSP[0]) { 
               //Fulfill Complete Order 
              //Remove the demand from the queue 
p0demands.removeFirst(); 
 
//Decrease our inventory by the demand amount 
onHand_RSP[0] -= p0demand.q; 
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//Add the transaction type, issuing stock and amount issued values to the transaction 
record 
get_Main().TransactionRecord[2] = 0; 
get_Main().TransactionRecord[13] = 1; 
get_Main().TransactionRecord[14] = p0demand.q;  
           } else {  
                //Issue Partial Order 
                //Decrease demand amount by what there is on the shelf 
double p0dmdRemainder2; 
p0dmdRemainder2 = p0demand.q - onHand_RSP[0]; 
 
AgentDemand part0Demand2 = new AgentDemand(0, p0dmdRemainder2, time()); 
p0demands.set(0, part0Demand2); 
 
//Zero out the on-hand RSP inventory 
onHand_RSP[0] = 0; 
 
//Add the transaction type, issuing stock and amount issued values to the transaction 
record 
get_Main().TransactionRecord[2] = 1; 
get_Main().TransactionRecord[13] = 1; 
get_Main().TransactionRecord[14] = p0demand.q - p0dmdRemainder2; 
 
 
//Out of stock - stop-processing. 
break;  
             } 
        } else { 
             //Tally BOs 
             //Increase the count of backorders for this part 
ieBOs[0]++; 
 
//Add the transaction type, issuing stock and amount issued values to the transaction 
record 
get_Main().TransactionRecord[2] = 2; 
get_Main().TransactionRecord[13] = 99; 
get_Main().TransactionRecord[14] = 0; 
 
//Out of stock - stop processing 
break;  
        }  
      } 
       
// UpdateVisualControls 
if(onHand[0] > 0){ 
p0onHand_Replicator = onHand[0]; 
}else if(onHand[0] <= 0){ 
 p0onHand_Replicator = 0; 
} 
  
if(onHand_RSP[0] > 0){ 
 p0RSPOH_Replicator = onHand_RSP[0]; 
}else if(onHand[0] <= 0){ 
 p0RSPOH_Replicator = 0; 
}  
} // whileLoop 
 
 
// Determine Part 1's Inventory Position       
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - p0backOrders_ELRS(); 
 
//Update text on main screen 
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]); 
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//Set order amount value and time to default values since this isn’t a replenishment 
order 
get_Main().TransactionRecord[15] = 9999; 
get_Main().TransactionRecord[16] = 9999; 
get_Main().TransactionRecord[17] = 9999; 
get_Main().TransactionRecord[18] = 9999; 
get_Main().TransactionRecord[19] = 9999; 
get_Main().TransactionRecord[20] = 9999; 
 
String transaction = ""; 
transaction = format(timeToDate(get_Main().TransactionRecord[0])); 
 
//Capture data on date specified by user 
if(time() >= Simulation_MC.CaptureDataStart){ 
 for(int a = 1; a<= 20; a++){ 
  transaction += "\\" + get_Main().TransactionRecord[a]; 
 } 
 Collections.addAll(Simulation_MC.TransactionHistory, transaction); 
} 
 
for(int j = 0; j <= 20; j++){ 
   get_Main().TransactionRecord[j] = 0; 
} 
 
transaction = ""; 
 
return;  
} 
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Appendix D.  ELRS Receive Shipment Process Flow and Java Code 

ELRS Receive Shipment Process Flow 
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Figure 11.  Flowchart of ELRS Receive Shipment Logic 
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ELRS Receive Shipment Process Java Code  

//If shipment is for Part 1 
if(msg.shipmentType() == 0){ 
 
 //Update the shipment receipt date to the current time 
 ShipmentReceiptDate[0] = time(); 
  

//Update text on the main screen to display the shipment receipt date in date 
//format 

 get_Main().txtp0ELRSShipmentReceiptDate.setText(timeToDate(ShipmentReceiptDate[0])
); 
  
 //Clear the shipment quantity for next shipment 
 get_Main().soS.p0ShipmentQty = 0; 
  
 //Calculate the shipment time. 
 ShipmentTime[0] = ShipmentReceiptDate[0] - SoSOrderDate[0]; 
  

//Remove all the demands from the p0demands_OST arraylist.  These arraylists 
//capture demands during OST for tracking. 

 p0demands_OST.removeAll(p0demands_OST); 
  

//Calculate the number of demands during O&ST and upate the nD_OST variable with 
//that quantity. 

 int p0totalElements = p0demandHistory.size(); 
 int p0demandsOST = 0; 
  

//Look through the part demand history to capture all of the times between the 
//Order Date and the Shipment Receipt Date 
//This value is equal to all of the demands that happened during the Order and 
//Ship Time. Then set nD_OST[0] equal to this count. 

 for(int i=0; i < p0totalElements; i++){ 
if(p0demandHistory.get(i) > SoSOrderDate[0] && p0demandHistory.get(i) <= 
ShipmentReceiptDate[0]){ 

   p0demands_OST.add(p0demandHistory.get(i)); 
   p0demandsOST++; 
  } 
 } 
 ND_OST[0] = p0demandsOST; 
  
 //Calculate the Variance of Order & Ship Time 
 calc_p0VOO(); 
  
 //Determine what items and to where to add them to the inventory 
 double RSPdelta0; 
 RSPdelta0 = RSP_S[0] - onHand_RSP[0]; 
  
 //Fill the RSP inventory first 
 onHand_RSP[0] += RSPdelta0; 
  
 //Add newly arrived items to POS inventory 
 if((msg.q - RSPdelta0) > 0){ 
  onHand[0] += (msg.q - RSPdelta0); 
 }else if(((msg.q - RSPdelta0) = < 0)){ 
  onHand[0] += 0; 
 } 
  
 //Remove expected shipments 
 onOrder[0] -= msg.q; 
 
//If shipment is for Part 1  
}else if(msg.shipmentType() == 1){ 
 
 
 //Update the shipment receipt date to the current time. 
 ShipmentReceiptDate[1] = time(); 
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//Update text on the main screen to display the shipment receipt date in //date 
format. 

 get_Main().txtp1ELRSShipmentReceiptDate.setText(timeToDate(ShipmentReceiptDate[1])
); 
  
 //Clear the shipment quantity for next shipment 
 get_Main().soS.p1ShipmentQty = 0; 
  
 //Calculate the shipment time. 
 ShipmentTime[1] = ShipmentReceiptDate[1] - SoSOrderDate[1]; 
  

//Remove all the demands from the p1demands_OST arraylist.  These arraylists 
//capture demands during OST for tracking. 

 p1demands_OST.removeAll(p1demands_OST); 
  

//Calculate the number of demands during O&ST and update the nD_OST variable with  
//that quantity. 

 int p1totalElements = p1demandHistory.size(); 
 int p1demandsOST = 0; 
  

//Look through the part demand history to capture all of the times between the 
//Order Date and the Shipment Receipt Date 
//This value is equal to all of the demands that happened during the Order and 
//Ship Time. Then set nD_OST[1] equal to this count. 

 for(int i=0; i < p1totalElements; i++){ 
if(p1demandHistory.get(i) > SoSOrderDate[1] && p1demandHistory.get(i) <= 
ShipmentReceiptDate[1]){ 

   p1demands_OST.add(p1demandHistory.get(i)); 
   p1demandsOST++; 
  } 
 } 
 ND_OST[1] = p1demandsOST; 
  
 //Calculate the Variance of Order & Ship Time. 
 calc_p1VOO(); 
  
 //Determine what items and to where to add them to the inventory 
 double RSPdelta1; 
 RSPdelta1 = RSP_S[1] - onHand_RSP[1]; 
  
 //Fill the RSP inventory first 
 onHand_RSP[1] += RSPdelta1; 
  
 //Add newly arrived items to POS inventory 
 if((msg.q - RSPdelta1) > 0){ 
  onHand[1] += (msg.q - RSPdelta1); 
 }else if(((msg.q - RSPdelta1) =< 0)){ 
  onHand[1] += 0; 
 } 
  
 //Remove expected shipments 
 onOrder[1] -= msg.q; 
} 
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Appendix E.  ELRS Stock Replenishment Process Flow and Java Code 
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Figure 12.  Flowchart of ELRS Stock Replenishment Logic 

ELRS Stock Replenishment Process Java Code 

//Check for orders for part 1 
void  orderp1FromSoS() {  
 

if(get_Main().aircraft.size() > 0){ 
// Determine Part 1's Inventory Position 
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] – 
p0backOrders_ELRS(); 
 
//Update text on Main AO screen. 
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get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);  
     
//Set the initial value of the order 
double  p0orderQty = (inventoryPosition[0] <= (s[0] + RSP_s[0])) ? ((S[0] 
+ RSP_S[0]) - inventoryPosition[0]) : 0; ; 
     
if (p0orderQty > 0 ) {  
       
         // Send order to SoS 
         //Create an order for Part 1 to send to the SoS 
ELRSDemand p1ELRSDemand = new ELRSDemand(1, p1orderQty, portSoS); 
 
//Add the order quantity to the arraylist p0orderAmounts for historical 
purposes 
p0orderAmounts.add(p0ELRSDemand.q); 
 
//Capture the order date into the SoSOrderDate array for Part 1 
SoSOrderDate[0] = time(); 
get_Main().txtp0ELRSOrderDate.setText(timeToDate(SoSOrderDate[0])); 
 
//Update transaction record array with order information for part 1 
get_Main().TransactionRecord[0] = SoSOrderDate[0]; 
get_Main().TransactionRecord[1] = 1; 
get_Main().TransactionRecord[2] = 3; 
get_Main().TransactionRecord[3] = S[0]; 
get_Main().TransactionRecord[4] = s[0]; 
get_Main().TransactionRecord[5] = RSP_S[0]; 
get_Main().TransactionRecord[6] = RSP_s[0]; 
get_Main().TransactionRecord[7] = inventoryPosition[0]; 
get_Main().TransactionRecord[8] = onHand[0]; 
get_Main().TransactionRecord[9] = onHand_RSP[0]; 
get_Main().TransactionRecord[10] = onOrder[0]; 
get_Main().TransactionRecord[11] = p0backOrders_ELRS(); 
get_Main().TransactionRecord[12] = 9999; 
get_Main().TransactionRecord[13] = 9999; 
get_Main().TransactionRecord[14] = 9999; 
get_Main().TransactionRecord[15] = p0orderQty; 
get_Main().TransactionRecord[16] = 9999; 
get_Main().TransactionRecord[17] = 9999; 
get_Main().TransactionRecord[18] = 9999; 
get_Main().TransactionRecord[19] = 9999; 
get_Main().TransactionRecord[20] = 9999; 
 
String transaction = ""; 
transaction = format(timeToDate(get_Main().TransactionRecord[0])); 
 
//Capture data on date specified by user 
if(time() >= Simulation_MC.CaptureDataStart){ 
 for(int a = 1; a<= 20; a++){ 
  transaction += "\\" + get_Main().TransactionRecord[a]; 
 } 
 Collections.addAll(Simulation_MC.TransactionHistory, transaction); 
} 
 
for(int j = 0; j <= 20; j++){ 
   get_Main().TransactionRecord[j] = 0; 
} 
 
transaction = ""; 
 
//Track what's on order by saving the order quantity to the array onOrder 
(index 0) 
onOrder[0] += p0ELRSDemand.q; 
 
//Update the ordering costs for Part 1 
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orderCosts[0] += OrderingCost[0]; 
 
//Track the total number of orders for Part 1 
numberOfOrders[0]++; 
 
//Track what's on order by saving the order quantity to array onOrder 
(index 0) 
onOrder[0] += p0ELRSDemand.q; 
 
//Send the order to the SoS 
portSoS.send(p0ELRSDemand); 
 
 
//Clear the order quantity value from the variable p0orderQty for the next 
order 
p0orderQty = 0; 
 
//Update the ordering costs for Part 1 
orderCosts[0] += OrderingCost[0]; 
 
//Track the total number of orders for Part 1 
numberOfOrders[0]++; 
     }  
 
// Determine Part 1's Inventory Position 
inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] – 
p0backOrders_ELRS(); 
 
//Update text on main screen. 
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);  

 
} 

 
return;  
} 
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Appendix F.  ELRS Ship Excess Stock Process Flow and Java Code 

ELRS Ship Excess Stock Process Flow 
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Figure 13.  Flowchart of ELRS Ship Excess Stock Logic 

ELRS Ship Excess Stock Process Java Code 

//Check for excess stock of Part 1 
void  shipp0FromELRS() {  
 
       // Determine Part 1's Inventory Position 

inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - 
p0backOrders_ELRS(); 

 
//Update text on Main AO screen. 
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);  
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//Is closure method set? 
if ((Simulation_MC.ClosureMethod != 0 && time() > 
Simulation_MC.InventoryDrawdownStart) )  

        if (onHand[0] > S[0]){ 
       // Fill RSP and then ship excess POS stock 
       //Update get_Main().TransactionHistory w/order 

get_Main().TransactionRecord[0] = time(); 
get_Main().TransactionRecord[1] = 1; 
get_Main().TransactionRecord[2] = 4; 
get_Main().TransactionRecord[3] = S[0]; 
get_Main().TransactionRecord[4] = s[0]; 
get_Main().TransactionRecord[5] = RSP_S[0]; 
get_Main().TransactionRecord[6] = RSP_s[0]; 
get_Main().TransactionRecord[7] = inventoryPosition[0]; 
get_Main().TransactionRecord[8] = onHand[0]; 
get_Main().TransactionRecord[9] = onHand_RSP[0]; 
get_Main().TransactionRecord[10] = onOrder[0]; 
get_Main().TransactionRecord[11] = p0backOrders_ELRS(); 
get_Main().TransactionRecord[12] = 9999; 
get_Main().TransactionRecord[13] = 9999; 
get_Main().TransactionRecord[14] = 9999; 
get_Main().TransactionRecord[15] = 9999; 
get_Main().TransactionRecord[16] = 9999; 
get_Main().TransactionRecord[17] = onHand[0]; 
get_Main().TransactionRecord[18] = 9999; 
get_Main().TransactionRecord[19] = 9999; 
get_Main().TransactionRecord[20] = 9999; 

 
String transaction = ""; 
transaction = format(timeToDate(get_Main().TransactionRecord[0])); 

 
//Capture data on date specified by user 
if(time() >= Simulation_MC.CaptureDataStart){ 

  for(int a = 1; a<= 20; a++){ 
transaction += "\\" + 
get_Main().TransactionRecord[a]; 

  } 
 
Collections.addAll(Simulation_MC.TransactionHistory, 
transaction); 

} 
 

for(int j = 0; j <= 20; j++){ 
  get_Main().TransactionRecord[j] = 0; 

} 
 

transaction = ""; 
 
 

//Calculate how much needs to be stock in RSP to bring on-hand 
levels up to RSP Order-Up-To-Level 
int p0RSPDelta = (int)RSP_S[0] - (int)onHand_RSP[0]; 
//If POS On-hand quantity is greater than what needs to be filled 
//in the RSP, fill the RSP and then subtract that quantity from the 
//POS On-hand quantity 
//Ship the remaining on-hand 
if(p0RSPDelta <= (int)onHand[0]){ 

  onHand_RSP[0] += p0RSPDelta; 
  onHand[0] -= p0RSPDelta; 
  onHand[0] = 0; 

//If the POS On-hand quantity is less than what needs to be filled 
//in the RSP, then fill the RSP with the entire POS on-hand 
//quantity 
}else if(p0RSPDelta > (int)onHand[0]){ 

  onHand_RSP[0] += onHand[0]; 
  onHand[0] = 0; 

} 
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//Set date for POSStockZeroDate 
Simulation_MC.POSStockZeroDate[0] = time(); 

}  
 } 
 
       // Determine Part 1's Inventory Position 

inventoryPosition[0] = onHand[0] + onHand_RSP[0] + onOrder[0] - 
p0backOrders_ELRS(); 

 
//Update text on Main AO screen. 
get_Main().txtp0InventoryPosition_ELRS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_ELRS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_ELRS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_ELRS.setText((int)p0backOrders_ELRS()); 
get_Main().txtp0OnHand_RSP.setText((int)onHand_RSP[0]);  

 
    return;  
  } 
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Appendix G.  SoS Receive ELRS Demand Process Flow and Java Code 

SoS Receive ELRS Demand Process Flow 

Which Part?

Finish

Add Part 1 demand to 
queue for processing

Part 1

Add Part 2 demand to 
queue for processing

Part 2

 

Figure 14.  Flowchart of SoS Receive ELRS Demand Logic 

SoS Receive ELRS Demand Process Java Code 

//Determine what part is demanded and then add the demand (replenishment order) to its 
//appropriate queue for processing by the SoS Stock Issue Process 
if(msg.p == 0){ 
 p0ELRSDemands.addLast(msg); 
} else if (msg.p == 1){ 
 p1ELRSDemands.addLast(msg); 
} 
 
//Check for additional ELRS demands (replenishment orders) 
checkp0ELRSDemands(); 
checkp1ELRSDemands(); 
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Appendix H.  SoS Stock Issue Process Flow and Java Code 

SoS Stock Issue Process Flow 

Determine inventory 
position

Is part’s on-hand balance 
greater than 0?

Is on-hand balance greater than 
or equal to demand quantity?

Fulfill Complete OrderIssue available stock and 
place order with supplier

Determine inventory 
position

True

False True

Place order with supplier

False

 

Figure 15.  Flowchart of SoS Stock Issue Logic 

SoS Stock Issue Process Java Code Example 

//Check for part 1 orders 
void  checkp0ELRSDemands() {  
 

// Determine Part 1's Inventory Position 
//Update the current inventory position 
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS(); 
 
//Update text on main screen. 
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());  
 
while (!p0ELRSDemands.isEmpty()) { 
       

ELRSDemand  p0ELRSDemand = p0ELRSDemands.getFirst() ; 
if (onHand[0] > 0) {  

         if (p0ELRSDemand.q <= onHand[0]) {  
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             // Ship complete order 
             //initiate shipment 

Shipment p0shipment = new Shipment(0, 
p0ELRSDemand.q); 
 
if(Simulation.SLQ_calculation == 0){ 
 create_P0Delivery(OST[0] * day(), 
p0shipment) 
}else if(Simulation.SLQ_calculation == 1){ 

if(random() >= SA[0]){ 
create_P0Delivery(OST[0]  * day(), 

p0shipment); 
}else if (random() < SA[0]){ 

create_P0Delivery((CONDEL[0] * day()) + 
(OST[0]  * day()), p0shipment, 
p0ELRSDemand.destination); 

    } 
} 

 } 
 
//Update the ship date and quantity variables 
ShipmentDate[0] = time(); 
p0ShipmentQty = p0shipment.q; 
 
//Update main screen information 
get_Main().txtp0SoSShipmentDate.setText(timeToDate(ShipmentDate[0])); 
 
//Decrease inventory level by quantity shipped 
onHand[0] -= p0ShipmentQty; 
 
//Remove the order from the queue 
p0ELRSDemands.removeFirst();  
 
        } else {  
 
             // Ship partial order 
             //Decrease demand amount by what there is on the shelf 

double p0IssueRemainder; 
p0IssueRemainder = p0ELRSDemand.q - onHand[0]; 
//Initiate shipment 
Shipment p0shipment = new Shipment(0, onHand[0]); 
 
if(Simulation.SLQ_calculation == 0){ 
 create_P0Delivery(OST[0] * day(), p0shipment); 
}else if(Simulation.SLQ_calculation == 1){ 

if(random() >= SA[0]){ 
create_P0Delivery(OST[0]  * day(), 

p0shipment); 
}else if (random() < SA[0]){ 

create_P0Delivery((CONDEL[0] * day()) + 
(OST[0]  * day()), p0shipment, 
p0ELRSDemand.destination); 

} 
   } 

 } 
 
//Zero out the on-hand inventory 
onHand[0] = 0; 
 
//Create a new demand for the remainder of what couldn't be filled out of 
stock 
ELRSDemand p0ELRSDemandRemainder = new ELRSDemand(0, p0IssueRemainder, 
portELRS); 
p0ELRSDemands.set(0, p0ELRSDemandRemainder); 
 
//Out of stock - stop-processing. 
break;  
      } else {  
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               // Place order with supplier 
           break;  
      }  
       
 
 
// UpdateVisualControls 
p0OnHand_Replicator = onHand[0];  

       
} 
 
// Determine Part 1's Inventory Position 
//Update the current inventory position 
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS(); 
 
//Update text on main screen 
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());  

  
return;  
} 
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Appendix I.  SoS Stock Replenishment Process Flow and Java Code 

 
SoS Stock Replenishment Process Flow 
 

Determine inventory 
position

Determine purchase amount
 (order-up-to-level – inventory position)

Is purchase amount greater than 0?

Process purchase from 
Supplier

Determine inventory 
position

True

False

 

Figure 16.  Flowchart of SoS Stock Replenishment Logic 

SoS Stock Replenishment Process Java Code Example 

//Send order for part 1 to supplier 
void  orderP0() {  
 

// Determine Part 1's Inventory Position       
//Update the current inventory position 
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS(); 
 
//Update text on main screen. 
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());  
     
//Determine how much to purchase from supplier 
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double  p0purchaseAmount = inventoryPosition[0] <= s[0] ? S[0] - 
inventoryPosition[0]  : 0 ; 
 
if (p0purchaseAmount > 0) {  
        // Process Purchase from Supplier 
//Determine onOrder amount 
onOrder[0] += p0purchaseAmount; 
 
//Send order to manufacturer by using a dynamic java event that delivers the order 
at a future time equal to leadTime[i] (where “I” is the part index) in days 
create_P0Manufacturing(leadTime[0] * day(), p0purchaseAmount);  
 
}  
 
// Determine Part 1's Inventory Position 
//Update the current inventory position 
inventoryPosition[0] = onHand[0] + onOrder[0] - p0backOrders_SoS(); 
 
//Update text on main screen. 
get_Main().txtp0InventoryPosition_SoS.setText((int)inventoryPosition[0]); 
get_Main().txtp0OnHand_SoS.setText((int)onHand[0]); 
get_Main().txtp0OnOrder_SoS.setText((int)onOrder[0]); 
get_Main().txtp0BackOrders_SoS.setText((int)p0backOrders_SoS());  

 
return;  
} 
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Appendix J.  Java Code for Base Computations of Consumable Item Stock Levels 

Calculate Annual Demands (AD) Code 
 
//Determine annual demand amount for Part 1 at current model time from the 
//p0demandHistory array. 
if(part == 0){ 
  int y = 0; 
  AD[part] = 0; 
  double timeYear = time()-365; 
  for(double v : p0demandHistory){ 
   if(timeYear < 0){ 
    if(v > 0 && v <= time()){ 
     y++; 
    } 
   }else if(timeYear >= 0){ 
    if(v >= timeYear && v <= time()){ 
     y++; 
    } 
   } 
  } 
  AD[part] = y; 
//Determine annual demand amount for Part 2 at current model time from the 
//p0demandHistory array. 
}else if(part == 1){ 
 int z = 0; 
 AD[part] = 0; 
 double timeYear = time()-365; 
 for(double x : p1demandHistory){ 
  if(timeYear < 0){ 
   if(x > 0 && x <= time()){ 
    z++; 
   } 
  }else if(timeYear >= 0){ 
   if(x >= timeYear && x <= time()){ 
    z++; 
   } 
  } 
 } 
 AD[part] = z; 
} 

 
Calculate Cumulative Recurring Demands (CRD) Code 
 
//This code calculates CRD using either a regular tally count or the annualization 
//process described in AFMAN 23-110 
//If the calculation type that is passed equals “0” and no annualization date has been 
//previously set this code will continue to add to the original quantity.  If an 
//annualization date has been set in the past then whatever value is in CRD_temp is added 
//to the annualization value of the CRD for the part. 
 
if(type == 0){ 
  if(annualizationDate[part] == 0){ 
   CRD[part] = 0; 
   for (int j = 0; j < partStats.length; j++){ 

if((partStats[j][0] >= DOFD[part]) && (partStats[j][1] == 
part)){ 

     CRD[part] += partStats[j][2]; 
    } 
   } 
  }else if(annualizationDate[part] > 0){ 
   CRD_temp[part] = 0; 
   for (int j = 0; j < partStats.length; j++){ 

if((partStats[j][1] == part) && (partStats[j][0] >= 
annualizationDate[part]) && (partStats[j][0] >= time()-1)){ 
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     CRD_temp[part] += partStats[j][2]; 
    } 
   } 
     CRD[part] += CRD_temp[part]; 
  } 
//If the calculation type passed is equal to “1” then an annualized value of the CRD is 
//calculated. 
}else if(type == 1){ 
  calcDDR(part); 
  CRD[part] = (int)(DDR[part] * 365); 
  
} 
 
 

Calculate Cumulative Demand Quantity (CDQ) and Cumulative Demand Quantity 
Squared (CDQ2) 
 
//This code calculates CDQ and CDQ2 using either a regular tally counts or the 
//annualization process described in AFMAN 23-110.  If the calculation type that is 
//passed equals “0” and no annualization date has been previously set this code will 
//continue to add to the original quantity.  If an annualization date has been set in the 
//past then whatever value is in CDQ_temp is added to the annualization value of the CDQ 
//value for the part.  CDQ2 is then calculated off of the CDQ value for the respective 
/part. 

 
if(type == 0){ 
  if(annualizationDate[part] == 0){ 
   CDQ[part] = 0; 
   for (int j = 0; j < partStats.length; j++){ 

if((partStats[j][0] >= DOFD[part]) && (partStats[j][1] == 
part)){ 

     CDQ[part] += partStats[j][2]; 
    } 
   } 
   CDQ2[part] = (int)(pow(CDQ[part],2)); 
  }else if(annualizationDate[part] > 0){ 
   CDQ_temp[part] = 0; 
   for (int j = 0; j < partStats.length; j++){ 

if((partStats[j][1] == part) && (partStats[j][0] >= 
annualizationDate[part]) && (partStats[j][0] >= time()-1)){ 

     CDQ_temp[part] += partStats[j][2]; 
    } 
   } 
     CDQ[part] += CDQ_temp[part]; 
     CDQ2[part] = (int)(pow(CDQ[part],2)); 
  } 
//If the calculation type passed is equal to “1” then an annualized value of the CDQ and 
CDQ2 is calculated for the part. 
 
}else if(type == 1){ 
  CDQ[part] = CDQ[part]/(time()-DOFD[part]); 
  CDQ[part] = (int)(CDQ[part] * 365); 
  calcVOD(part); 
  CDQ2[part] = (int)((365 * VOD[part]) + pow(CDQ[part],2)/365); 
  
} 
 
 

Daily Demand Rate (DDR) Code 
 
//DDR formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph 
//19.2.1.1.1. 
//DDR is the average quantity of an item that is used daily.  It’s simply the cumulative 
//recurring demands (CRD) divided by the number of days between the current date and the 
//date of first demand (DOFD) 
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//As specified in the AFMAN, if the difference, in days, between the current date and the 
//DOFD is less than 180 or greater than 540, then value of 180 and 540, respectively, are 
//used as the denominator value 
 
if(time()-DOFD[i] < 180){ 
  DDR[i] = (CRD[i] / 180); 
}else if(time()-DOFD[i] >= 180 && time() - DOFD[i] < 540){ 
  DDR[i] = (CRD[i] / (time() - DOFD[i])); 
}else if(time()-DOFD[i] >= 180 && time()-DOFD[i] >=540){ 
  DDR[i] = (CRD[i] / 540); 
} 
 

Daily Demand Frequency Rate (DDFR) Code 
 
//DDFR formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph 
//19.2.1.1.4. DDFR is the average daily number of customer demands for a part.  DDFR is 
//also known as the demand arrival rate. DDFR is calculated by dividing the sum of the 
//number of demands in the current period (ND_CP), number of demands occurring between 6 
//to 12 months in the past (ND_PSM1), and the number of demands that occurred between 12 
//to 18 months in the past (ND_PSM2) by the difference, in days, between the current date 
//and the DOFD.  This code does essentially the same process, but just with a moving 18-
//month window. 
 
int DemandCount0 = 0; 
int DemandCount1 = 0; 
double DateDiff0 = time() - DOFD[0]; 
double DateDiff1 = time() - DOFD[1]; 
double denominator = 365; 
double denominator1 = 540; 
if(part == 0){ 
 for(double v : p0demandHistory){ 
  if(v > DOFD[0] && v <= time()){ 
   DemandCount0++; 
  } 
 } 
 if(DemandCount0 >= 1){ 
  if(DateDiff0 <= 365){ 
   DDFR[0] = (DemandCount0/denominator); 
  }else if(DateDiff0 > 365 && DateDiff0 < 540){ 
   DDFR[0] = (DemandCount0/(time()-DOFD[0])); 
  }else if(DateDiff0 >= 540){ 
   DDFR[0] = (DemandCount0/denominator1); 
  } 
 } 
}if(part == 1){ 
 for(double v : p1demandHistory){ 
  if(v > DOFD[1] && v <= time()){ 
   DemandCount1++; 
  } 
 } 
 if(DateDiff1 <= 365){ 
  DDFR[1] = (DemandCount1/denominator); 
 }else if(DateDiff1 > 365 && DateDiff1 < 540){ 
  DDFR[1] = (DemandCount1/(time()-DOFD[1])); 
 }else if(DateDiff1 >= 540){ 
  DDFR[1] = (DemandCount1/denominator1); 
 } 
} 
 

General Economic Order Quantity (EOQ) Model Code 
 
//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
//4, Figure 19B4.1 
 
EOQ[i] = (int)pow((2*AD[i]*OrderingCost[i])/HoldingCost[i],.5); 
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General Economic Order Quantity (EOQ) Model Code for Base-level Computations 
 
//This function is used if the item’s ROP is calculated using standard base-level 
computations 
//If compute EOQ is greater than maxEOQ value, set quarterly variable to maxEOQ value 
 
if(EOQ[i] >= DDR[i] * 365){  
 calcMaxEOQ(i); 
 wEOQ[i] = maxEOQ[i]; 
//If compute EOQ is less than minEOQ value, set quarterly variable to minEOQ value 
}else if(EOQ[i] <= DDR[i] * 30){  
 calcMinEOQ(i); 
 wEOQ[i] = minEOQ[i]; 
//If compute EOQ is not greater than maxEOQ value and not less than minEOQ value, set 
quarterly //variable to EOQ value 
}else if((EOQ[i] < DDR[i] * 365) && (EOQ[i] > DDR[i] * 30)){ 
 calcEOQ(i); 
 wEOQ[i] = EOQ[i]; 
} 
 
 

General Economic Order Quantity (EOQ) Model Code for Central Computations 
(COLT Model) 
 
//This function is used if the item's ROP is calculated using COLT marginal analysis 
//The formulas for this code is specified in AFMAN 23-110 Volume 2, Part 2, Chapter 19, 
//Attachment 19B-3 and Attachment 19B-4 
 
if(EOQ[i] >= DDR[i] * 90){  
 calcMaxEOQ(i); 
 wEOQ[i] = maxEOQ[i]; 
//If compute EOQ is less than minEOQ value, set quarterly variable to minEOQ value 
}else if(EOQ[i] <= DDR[i] * 30){ 
 calcMinEOQ(i);  
 wEOQ[i] = minEOQ[i]; 
//If compute EOQ is not greater than maxEOQ value and not less than minEOQ value, set 
quarterly //variable to EOQ value 
}else if((EOQ[i] < DDR[i] * 90) && (EOQ[i] > DDR[i] * 30)){ 
 calcEOQ(i); 
 wEOQ[i] = EOQ[i]; 
} 
 

Maximum EOQ Model Code 
 
//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4 
//If the stock is calculated using standard base calculations; we assume the item is not 
sourced //from DLA in which case the maximum EOQ rules from AFMAN 23-110, Volume 2, Part 
2, Chapter 19, //Attachment 19B-4, Paragraph 19B.4.4.1 apply 
//If the stock is calculated using COLT, we assume it is sourced from DLA in which case 
the //maximum EOQ rules from AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4, Paragraph //19B.4.4.2.3.1 
 
if(Simulation.SLQ_Calculation == 0){ 
 maxEOQ[i] = (int)(DDR[i] * 365); 
}else if (Simulation.SLQ_Calculation == 1){ 
 maxEOQ[i] = (int)(DDR[i] * 90); 
} 
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Minimum EOQ Model Code 
 
//EOQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
4, //Paragraph 19B.4.4.1 
//Minimum EOQ values don't depend on if an item is sourced from DLA or not (AFMAN 23-110, 
Volume //2, Part 2, Chapter 19, Attachment 19B-4, Paragraph 19B.4.4.2.3.1) 
 
minEOQ[i] = DDR[i] * 30; 
 

Order and Ship Time Quantity (OSTQ) Code 
 
//OSTQ formula as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, paragraph 
//19.2.2.1.1.2.1 
 
OSTQ[i] = round(DDR[i] * ShipmentTime[i]); 

 
Safety Level Quantity (SLQ) Code 
 
//SLQ Formulas as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 
19B-18, //Paragraphs 19B18.2 – 19B18.6 
//Determine SLQ levels based on the current simulation time. 
 
double tempSLQ = 0; 
if(ND[i]/(time()-DOFD[i]) > 180){ 
 if(VOD[i] != 0 && qtrlyVOO[i] != 0){ 

tempSLQ = round(cFactor[i] * 
pow((get_Main().soS.OST[i]*VOD[i])+(DDR[i]*DDR[i]*qtrlyVOO[i]),1/2)); 

  sLQ_formulatempvalue[i] = "Primary"; 
  primarySLQ[i] = (int)tempSLQ; 
 } else if(VOD[i] == 0 && qtrlyVOO[i] != 0){ 

tempSLQ = round(cFactor[i] * pow( ( (ND[i]/(time()-DOFD[i]) * 
(get_Main().soS.OST[i]) * pow((CRD[i]/ND[i]),2) + 
(pow(DDR[i],2)*(qtrlyVOO[i])))),1/2)); 

  sLQ_formulatempvalue[i] = "First Sub"; 
  firstSubSLQ[i] = (int)tempSLQ; 
 } else if(VOD[i] != 0 && qtrlyVOO[i] == 0){ 

tempSLQ = round(cFactor[i] * pow((ND[i]/(time()-
DOFD[i])*(get_Main().soS.OST[i])*pow((CRD[i]/ND[i]),2)),1/2)); 

  sLQ_formulatempvalue[i] = "Second Sub"; 
  secondSubSLQ[i] = (int)tempSLQ; 
 } 
} else if((ND[i]/time()-DOFD[i])<=180){ 
 if(VOD[i] != 0 && qtrlyVOO[i] != 0){ 

tempSLQ = round(cFactor[i] * 
pow((get_Main().soS.OST[i]*VOD[i]+pow(DDR[i],2)*qtrlyVOO[i]),1/2)); 

  sLQ_formulatempvalue[i] = "Primary"; 
  primarySLQ[i] = (int)tempSLQ; 
 } else if(VOD[i] == 0 && qtrlyVOO[i] != 0){ 

tempSLQ = round(cFactor[i] * pow(180 * (get_Main().soS.OST[i]) * 
pow((CRD[i]/ND[i]),2) + (pow(DDR[i],2)*(qtrlyVOO[i])),1/2)); 

  sLQ_formulatempvalue[i] = "First Sub"; 
  firstSubSLQ[i] = (int)tempSLQ; 
 } else if(VOD[i] != 0 && qtrlyVOO[i] == 0){ 

tempSLQ = round(cFactor[i] * 
pow(180*(get_Main().soS.OST[i])*pow((CRD[i]/ND[i]),2),1/2)); 

  sLQ_formulatempvalue[i] = "Second Sub"; 
  secondSubSLQ[i] = (int)tempSLQ; 
 }  
} 
 
//Compute Maximum Safety Level Quantity 
maxSLQ[i] = (int)(2 * cFactor[i] * OSTQ[i]); 
 
//Determine if computed SLQ is less than Maximum SLQ.  If SLQ is less than Maximum SLQ, 
use the //computed SLQ.  Otherwise, if SLQ is greater than Maximum SLQ use the Maximum 
SLQ amount for //Stock Level Computation 
if(tempSLQ <= maxSLQ[i]){ 
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 SLQ[i] = (int)tempSLQ; 
} else if(tempSLQ > maxSLQ[i]) { 
 SLQ[i] = (int)maxSLQ[i]; 
 sLQ_formulatempvalue[i] = "Maximum SLQ"; 
} 
 

Variance of Demand (VOD) Code 
 
//VOD calculations as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 
19B-15 
 
//Declarations 
double n = time()-DOFD[i]; 
 
//If time from Date of First Demand (DOFD) is less than 180, use the value of 180 in the 
//denominator else if time from DOFD is greater than 180 use the actual number of days 
if(n<=180){ 
 VOD[i] = ((CDQ2[i] - pow(CDQ[i],2)/180 )/ 180); 
}else if(n>180){ 
 VOD[i] = ((CDQ2[i] - pow(CDQ[i],2)/n )/ n); 
} 

Variance of Order and Ship Time (VOO) Code 
 
//VOO calculations as specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 
19B-16 and Chapter 5 
 
//Declaration of variables 
double p0lowerboundDI = SoSOrderDate[0]; 
double p0upperboundDI = SoSOrderDate[0] + 5; 
 
double[][] p0vooArray = new double[p0demands_OST.size()][8]; 
 
//Create frequency distribution table 
for(int a = 0, b = 1, c = 6; a < p0vooArray.length; a++){    
 int p0counter = 0;  
 p0vooArray[a][0] = p0lowerboundDI; 
 p0vooArray[a][1] = p0upperboundDI; 
 //Calculate Day Interval Lowerbound 
 p0vooArray[a][2] = b; 
 //Calculate Day Interval Upperbound 
 p0vooArray[a][3] = c;  
  
 //Calculate FI (count of receipts during O&ST)    
 for(int d = 0; d < p0demands_OST.size(); d++){ 
if(p0demands_OST.get(d) >= p0lowerboundDI && p0demands_OST.get(d) < p0upperboundDI){ 
   p0counter++; 
  }       
 } 
   
 p0vooArray[a][4]=p0counter; 
  
 //Increase Day Interval Bounds 
 b += 6; 
 c += 6;  
 p0lowerboundDI += 6; 
 p0upperboundDI += 6; 
} 
   
for(int i = 0; i< p0vooArray.length; i++){ 
 //Calculate MI (Mid-Point of Day Interval) 
 p0vooArray[i][5] = ((p0vooArray[i][2] + p0vooArray[i][3]) / 2); 
 //Calculate FI * MI 
 p0vooArray[i][6] = (p0vooArray[i][4] * p0vooArray[i][5]); 
 //Calculate FI * MI^2 
 p0vooArray[i][7] = (p0vooArray[i][4] * (p0vooArray[i][5] * p0vooArray[i][5])); 
} 
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//Calculate sums of receipts during OS&T, Mid-Points of Day Intervals and Number of 
Receipts during OS&T * Mid-Points of Day Intervals squared 
double p0sumFI = 0, p0sumFIMI = 0, p0sumFIMI2 = 0; 
 
for(int i = 0; i < p0vooArray.length; i++){ 
 p0sumFI += p0vooArray[i][4]; 
 p0sumFIMI += p0vooArray[i][6]; 
 p0sumFIMI2 += p0vooArray[i][7]; 
} 
 
//Calculate final value of Variance of Order and Ship Time 
if(p0sumFI == 0){ 
 VOO[0] = 0; 
 p0VOO.add(0.0); 
}else if(p0sumFI > 0){ 
 VOO[0] = (p0sumFIMI2 - (pow(p0sumFIMI,2)/p0sumFI))/p0sumFI; 
 p0VOO.add(VOO[0]); 
} 

 
Consumable Item Demand Level Code 
 
//The order-up-to level of a part is also known as the consumable item demand level code.  
//Depending on the user selected reorder point calculation parameter, this formula is 
manipulated  
//to compute the ROP either as SLQ + OSTQ or through COLT’s marginal analysis process. 
 
if(Simulation.SLQ_Calculation == 0){ 
 EOQ_DL[i] = round(wEOQ[i] + OSTQ[i] + SLQ[i] + 0.999); 
}else if(Simulation.SLQ_Calculation == 1){ 
 EOQ_DL[i] = round(wEOQ[i] + colt_s[i] + 0.999); 
} 
return EOQ_DL[i]; 
 
Consumable Item Reorder Point Code 
 
//The order-up-to level of part is also known as the consumable item demand level code. 
The  
//formula for this code is specified in AFMAN 23-110 Volume 2, Part 2, Chapter 19, 
Attachment  
//19B-3, Paragraph 19.2.2.1.2.1.1. 
//Depending on the user selected reorder point calculation parameter, this formula is 
manipulated  
//to either compute the ROP as SLQ + OSTQ or through COLT’s marginal analysis process. 
 
if(Simulation.SLQ_Calculation == 0){ 
 ROP[i] = round(OSTQ[i] + SLQ[i] + 0.999); 
}else if(Simulation.SLQ_Calculation == 1){ 
 ROP[i] = colt_s[i]; 

} 
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Appendix K.  COLT Parameters Computation Java Code 

 
//The lot size value can be considered the same as the average size of each demand. 
LotSize[i] = (int)((CRD[i]/ND[i]) + 0.5); 
 
//The pipe value can be consider the same as demand during lead time with consideration 
given to the availability of stock at the Source of Supply 
Pipe[i] = (get_Main().soS.OST[i] + get_Main().soS.SA[i] + ((1-get_Main().soS.SA[i]) * 
get_Main().soS.CONDEL[i])) * DDR[i]; 
 
//Variance to Mean Ratio (VMR) calculation 
VMR[i] = (DDR[i] * DDR[i] * get_Main().soS.SA[i] * (1 - get_Main().soS.SA[i]) * 
get_Main().soS.CONDEL[i] * get_Main().soS.CONDEL[i] + (2 * LotSize[i] - 1) * DDR[i] * ((1 
- get_Main().soS.SA[i]) * get_Main().soS.CONDEL[i] + 14 + get_Main().soS.SA[i])) / 
(DDR[i] * (14 + get_Main().soS.SA[i] + (1 - get_Main().soS.SA[i]) * 
get_Main().soS.CONDEL[i])); 
 
//Inverse of VMR – used in the negative binomial recursion formula 
p[i] = 1/VMR[i]; 
 
//One minus the VMR inverse – used in the negative binomial recursion formula 
q[i] = 1-p[i]; 
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Appendix L.  Negative Binomial Formula for Expected Backorders Java Code 

 
//This code was provided by the 402 SCMS at Wright Patterson AFB, OH 
//The following parameters are passed to this function from the ELRS Active Object: 
// i – part index 
// EOQ – computed economic order quantity value 
// ROP – computed reorder point 
// s – user determined value for bench stock level 
// pipe – expected lead time 
// p –  
// q –  
// vtm – variance to mean ratio 
 
//Declarations and initialization of variables 
double OEBO1 = 0; 
double AllNegBin = 0; 
double fqp = 0; 
double Pj = 0; 
double stock1a = 0; 
double stock1b = 0;  
double stock2a = 0; 
double stock2b = 0; 
double stock3a = 0; 
double stock3b = 0; 
double f = 0; 
double g = 0; 
double Oneg = 0; 
double Onef = 0; 
double LogOneg = 0; 
double A = 0; 
double Lcumu = 0;  
double Lcumu2 = 0; 
double Lcumu3 = 0; 
double Lcumu1a = 0; 
double Lcumu1b = 0; 
double Lcumu2a = 0; 
double Lcumu2b = 0;  
double Lcumu3a = 0;  
double Lcumu3b = 0; 
double LcumuNegBin = 0; 
double LcumuNegBin2 = 0; 
double LcumuNegBin3 = 0; 
double LP0 = 0; 
double LP1 = 0; 
double P0 = 0; 
double P1 = 0; 
boolean Big; 
stock1a = ROP + s; 
stock1b = EOQ + ROP + s; 
stock2a = ROP + s - 1; 
stock2b = EOQ + ROP + s - 1; 
stock3a = ROP + s - 2; 
stock3b = EOQ + ROP + s - 2; 
f = pipe / (vtm - 1); 
fqp = 0; 
AllNegBin = 0; 
     
    if(stock1b < 0){ 
        AllNegBin = 0; 
    }else{ 
 
        g = 1 / vtm; 
        Oneg = 1 - g; 
        Onef = f - 1; 
        LogOneg = Math.log(Oneg); 
        A = Onef * Oneg; 
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        if(pipe == 0){ 
             
            if(stock1a < 0){ 
                Lcumu1a = 0; 
            }else{ 
                Lcumu1a = 1; 
            } 
             
            Lcumu1b = 1; 
             
            if(stock2b < 0){ 
                Lcumu2a = 0; 
                Lcumu2b = 0; 
            }else if (stock2a < 0) { 
                Lcumu2a = 0; 
                Lcumu2b = 1; 
            }else{ 
                Lcumu2a = 1; 
                Lcumu2b = 1; 
           } 
            
            if(stock3b < 0){ 
                Lcumu3a = 0; 
                Lcumu3b = 0; 
            }else if (stock3a < 0){ 
                Lcumu3a = 0; 
                Lcumu3b = 1; 
            }else{ 
                Lcumu3a = 1; 
                Lcumu3b = 1; 
            } 
        }else{ 
 
            P0 = Math.pow(g,f); 
            Lcumu = P0; 
            Lcumu2 = 0; 
            Lcumu3 = 0; 
            LP0 = f * Math.log(g); 
             
            if(LP0 < -30){ 
                Big = true; 
            }else{ 
                Big = false; 
            } 
             
            if(stock1a < 0){ 
                Lcumu1a = 0; 
            }else{ 
                Lcumu1a = P0; 
            } 
             
            Lcumu1b = P0; 
            Lcumu2a = 0; 
            Lcumu2b = 0; 
            Lcumu3a = 0; 
            Lcumu3b = 0; 
                 
            for(int j = 1; j <= stock1b; j++){ 
                if(Big == true){ 
                    LP1 = LP0 + Math.log(Onef + j) + LogOneg - Math.log(j); 
                    P1 = exp(LP1); 
                 Lcumu = Lcumu + P1; 
                    Pj = P1 * j; 
                    Lcumu2 = Lcumu2 + Pj; 
                    Lcumu3 = Lcumu3 + Pj * (j - 1); 
                    LP0 = LP1; 
                }else if(Big == false){ 
                    P1 = P0 * (A / j + Oneg); 
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                    Lcumu = Lcumu + P1; 
                    Pj = P1 * j; 
                    Lcumu2 = Lcumu2 + Pj; 
                    Lcumu3 = Lcumu3 + Pj * (j - 1); 
                    P0 = P1; 
                } 
                 
                if(j == stock1a){ 
                    Lcumu1a = Lcumu; 
                    Lcumu2a = Lcumu2; 
                    Lcumu3a = Lcumu3; 
                } 
            } 
            Lcumu1b = Lcumu; 
            Lcumu2b = Lcumu2; 
            Lcumu3b = Lcumu3; 
        } 
             
        fqp = f * q / p; 
        LcumuNegBin = (stock1b * (stock1b + 1) * Lcumu1b) - (stock1a * (stock1a + 1) * 
Lcumu1a); 
        if(pipe == 0){ 
            LcumuNegBin2 = 0; 
            LcumuNegBin3 = 0; 
        } else { 
            LcumuNegBin2 = 2 * fqp * ((stock2a + 1) * Lcumu2a - (stock2b + 1) * Lcumu2b) 
/ pipe; 
            LcumuNegBin3 = fqp * (fqp + q / p) * (Lcumu3b - Lcumu3a) / pipe / (pipe + vtm 
- 1); 
       } 
         
        AllNegBin = LcumuNegBin + LcumuNegBin2 + LcumuNegBin3; 
     
    } 
  
    OEBO1 = (0.5 / EOQ) * AllNegBin + fqp - (ROP + s) - 0.5 * (EOQ + 1); 
 
return OEBO1; 
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Appendix M.  COLT Marginal Analysis Process Java Code 

 
//Declarations 
double[][] coltMA_Array = new double[2000][18]; 
 
//Initialization of COLT Marginal Analysis array 
for(int a = 0; a <= 1999; a++){ 
 for(int b = 0; b <= 16; b++){ 
  coltMA_Array[a][b] = 0; 
 } 
} 
 
//***************************Create COLT MA Workspace******************************** 
//Compute Index 
for(int a = 1, b = 22; a <= wEOQ[0]+2; a++, b++){ 
 coltMA_Array[a-1][0] += a; 
} 
 
//********************Calculate Part 1's COLT MA Parameters*********************** 
//Compute Part 1 ROP 
for(int a = -1, b = 22; a <= (wEOQ[0]); a++, b++){ 
 coltMA_Array[a + 1][1] += a; 
} 
 
//Compute Part 1’s EOQ values 
coltMA_Array[0][2] = 1; 
coltMA_Array[1][2] = 1; 
 
 
for(int a = 1, b = 22; a <= (wEOQ[0]); a++, b++){ 
 coltMA_Array[a+1][2] = wEOQ[0]; 
} 
 
//Compute Part 1 Level 
for(int a = 0, b = 22; a <=(wEOQ[0]+1); a++, b++){ 
 coltMA_Array[a][3] = coltMA_Array[a][1] + coltMA_Array[a][2]; 
} 
 
//Compute Part 1 Expected BackOrders (EBOs) 
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){ 
coltMA_Array[a][4] = calc_nbEBO(0, coltMA_Array[a][2], coltMA_Array[a][1], BenchStock[0], 
Pipe[0], p[0], q[0], VMR[0]); 
} 
 
//Compute Part 1 Customer Wait Time 
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){ 
 coltMA_Array[a][5] = coltMA_Array[a][4]/get_Main().eLRS.DDR[0]; 
} 
 
//Compute Part 1 EBO Delta 
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){ 
 if(coltMA_Array[a][1] == -1){ 
  coltMA_Array[a][6] = 0; 
 }else if(coltMA_Array[a][1] > -1){ 
coltMA_Array[a][6] = ((coltMA_Array[a-1][4]-coltMA_Array[a][4])/(coltMA_Array[a][3]-
coltMA_Array[a-1][3])); 
 } 
} 
 
//Compute Part 1 Marginal Benefit 
for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){ 
 coltMA_Array[a][7] = coltMA_Array[a][6]/get_Main().soS.UnitPrice[0]; 
} 
 
//********************Calculate Part 2's COLT MA Parameters*********************** 
//Compute Part 2 ROP 
for(int a = -1, b = 22; a <= (wEOQ[1]); a++, b++){ 
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 coltMA_Array[a + 1][8] += a; 
} 
 
//Compute Part 2’s EOQ values 
coltMA_Array[0][9] = 1; 
coltMA_Array[1][9] = 1; 
 
for(int a = 1, b = 22; a <= (wEOQ[1]); a++, b++){ 
 coltMA_Array[a+1][9] = wEOQ[1]; 
} 
 
//Compute Part 2 Level 
for(int a = 0, b = 22; a <=(wEOQ[1]+1); a++, b++){ 
 coltMA_Array[a][10] = coltMA_Array[a][8] + coltMA_Array[a][9]; 
} 
 
//Compute Part 2 Eexpected BackOrders (EBOs) 
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){ 
coltMA_Array[a][11] = calc_nbEBO(1, coltMA_Array[a][9], coltMA_Array[a][8], 
BenchStock[1], Pipe[1], p[1], q[1], VMR[1]); 
} 
 
//Compute Part 2 Customer Wait Time 
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){ 
 coltMA_Array[a][12] = coltMA_Array[a][11]/get_Main().eLRS.DDR[1]; 
} 
 
//Compute Part 2 EBO Delta 
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){ 
 if(coltMA_Array[a][8] == -1){ 
  coltMA_Array[a][13] = 0; 
 }else if(coltMA_Array[a][8] > -1){ 
coltMA_Array[a][13] = ((coltMA_Array[a-1][11]-coltMA_Array[a][11])/(coltMA_Array[a][10]-
coltMA_Array[a-1][10])); 
 } 
} 
 
//Compute Part 2 Marginal Benefit 
for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){ 
 coltMA_Array[a][14] = coltMA_Array[a][13]/get_Main().soS.UnitPrice[1]; 
} 
 
 
//********************Update COLT Sort Value Target*********************** 
if(wEOQ[0] > wEOQ[1]){ 
 for(int a = 0, b = 22; a <= (wEOQ[0]+1); a++, b++){ 
  coltMA_Array[a][15] = SVTgt; 
 } 
}else if (wEOQ[0] <= wEOQ[1]){ 
 for(int a = 0, b = 22; a <= (wEOQ[1]+1); a++, b++){ 
  coltMA_Array[a][15] = SVTgt; 
 } 
} 
 
//Initialize ROP variable computed by COLT 
colt_s[0] = 0; 
colt_s[1] = 0; 
 
//Compute Item to Stock 
//If Part 1's EOQ is bigger than Part 2's EOQ, Part 1's EOQ + 1 will be used as the 
stopping //point 
if(wEOQ[0] > wEOQ[1]){ 
 //Loop through the arrays to run the marginal analysis 
 //array1 initializes the array containing Part 1's information 
 //array2 initializes the array containing Part 2's information 
 //array3 initializes the array containing the Sort Value Target 
//All of the above arrays are created in order to output a Marginal Analysis table to 
//Excel 
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 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[0] + 1); 
a++){ 
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger 
//than the Sort Value Target run this part of the if-else statement 
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] > 
coltMA_Array[array3][15])){ 
//If the marginal benefit of Part 1 is bigger when compared to the //marginal benefit of 
//Part 2, increase the ROP of Part 1 by a value of 1 and then move to the next marginal 
//benefit value of Part 1 
    if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
     colt_s[0]++; 
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of 
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal 
//benefit value of Part 2 
    }else if((coltMA_Array[array1][7] < 
coltMA_Array[array2][14])){ 
     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
    } 
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this 
//part of the if-else statement 
}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
     colt_s[0]++; 
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this 
//part of the if-else statement 
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
  } 
 } 
//If Part 2's EOQ is bigger than Part 1's EOQ, Part 2's EOQ + 1 will be used as the 
//stopping point 
}else if(wEOQ[0] < wEOQ[1]){ 
 //Loop through the arrays to run the marginal analysis 
 //array1 initializes the array containing Part 1's information 
 //array2 initializes the array containing Part 2's information 
 //array3 initializes the array containing the Sort Value Target 
//All of the above arrays are created in order to output a Marginal Analysis table to 
//Excel 
 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[1] + 1); 
a++){ 
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger 
//than the Sort Value Target run this part of the if-else statement 
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] > 
coltMA_Array[array3][15])){ 
//If the marginal benefit of Part 1 is bigger when compared to the marginal benefit of 
//Part 2, increase the ROP of Part 1 by a value of 1and then move to the next marginal 
//benefit value of Part 1 
    if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
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     colt_s[0]++; 
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of 
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal 
//benefit value of Part 2 
    }else if((coltMA_Array[array1][7] < 
coltMA_Array[array2][14])){ 
     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
    } 
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this 
//part of the if-else statement 
}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
     colt_s[0]++; 
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this 
//part of the if-else statement 
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
  } 
 } 
//If Part 2's EOQ equal to Part 1's EOQ, Part 2's EOQ + 1 will be used as the stopping 
//point 
}else if(wEOQ[0] == wEOQ[1]){ 
 //Loop through the arrays to run the marginal analysis 
 //array1 initializes the array containing Part 1's information 
 //array2 initializes the array containing Part 2's information 
 //array3 initializes the array containing the Sort Value Target 
//All of the above arrays are created in order to output a Marginal Analysis table to 
//Excel 
 for(int a = 0, array1 = 1, array2 = 1, array3 = 1, row = 23; a <= (wEOQ[1] + 1); 
 a++){ 
//If the marginal benefit of Part 1 and the marginal benefit of Part 2 are both bigger 
than the Sort Value Target run this part of the if-else statement 
if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && (coltMA_Array[array2][14] > 
coltMA_Array[array3][15])){ 
//If the marginal benefit of Part 1 is bigger when compared to the marginal benefit of 
//Part 2, increase the ROP of Part 1 by a value of 1 and then move to the next marginal 
//benefit value of Part 1 
    if((coltMA_Array[array1][7] > coltMA_Array[array2][14])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
     colt_s[0]++; 
//If the marginal benefit of Part 2 is bigger when compared to the marginal benefit of 
//Part 1, increase the ROP of Part 2 by a value of 1 and then move to the next marginal 
//benefit value of Part 2 

}else if((coltMA_Array[array1][7] < 
coltMA_Array[array2][14])){ 

     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
    } 
//If only the marginal benefit of Part 1 is bigger than the Sort Value Target run this 
//part of the if-else statement 
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}else if((coltMA_Array[array1][7] > coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] < coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 1; 
     array1++; 
     array3++; 
     row++; 
     colt_s[0]++; 
//If only the marginal benefit of Part 2 is bigger than the Sort Value Target run this 
//part of the if-else statement 
}else if((coltMA_Array[array1][7] < coltMA_Array[array3][15]) && 
(coltMA_Array[array2][14] > coltMA_Array[array3][15])){ 
     coltMA_Array[array3][16] = 2; 
     array2++; 
     array3++; 
     row++; 
     colt_s[1]++; 
  } 
 } 
} 
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Appendix N.  Initial Inventory Update Process Flow and Java Code 
 

Initial Inventory Update Process Flow 
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Figure 17.  Flowchart of Initial Inventory Update Logic 
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Initial Inventory Update Process Java Code 
 
//Calculate average Variance of Order and Ship Time (VOO) for any past shipments of Part 
1 
if(p0VOO.size() != 0){ 
 double sump0VOO = 0; 
 for (int j = 0; j < p0VOO.size(); j++){ 
  sump0VOO += p0VOO.get(j); 
 } 
 qtrlyVOO[0] = sump0VOO/p0VOO.size(); 
}else if(p0VOO.size() == 0){ 
 qtrlyVOO[0] = 0; 
} 
 
//Calculate average Variance of Order and Ship Time (VOO) for any past shipments of Part 
2 
if(p1VOO.size() != 0){ 
 double sump1VOO = 0; 
 for (int j = 0; j < p1VOO.size(); j++){ 
  sump1VOO += p1VOO.get(j); 
 } 
 qtrlyVOO[1] = sump1VOO/p1VOO.size(); 
}else if(p1VOO.size() == 0){ 
 qtrlyVOO[1] = 0; 
} 
 
//Clear VOO arrays 
p0VOO.clear(); 
p1VOO.clear(); 
 
//Calculate inventory management parameters for each part 
for(int i = 0; i <= 1; i++){ 
  
 //Calculate Daily Demand Rate 
 calcCRD(0,i); 

 
//Calculate Daily Demand Rate 

 calcDDR(i); 
    
 //Calculate Daily Demand Frequency Rate 
 calcDDFR(i); 
 
 //Calculate Daily Demand Rate 
 calcCDQ_CDQ2(0,i); 
  
 //Calculate Variance Of Demand 
 calcVOD(i); 
  
 //Calculate Safety Level Quantity 
 calcSLQ(i); 
 sLQ_formula[i] = sLQ_formulatempvalue[i]; 
  
 //Calculate Order and Ship Time Quantity 
 calcOSTQ(i); 
  
 //Update EOQ Value based on how inventory calculations are computed: Base v. 
Centrally 
 if(Simulation.SLQ_Calculation == 0){ 
  Base_EOQ(i); 
 }else if (Simulation.SLQ_Calculation == 1){ 
  DLA_EOQ(i); 
 } 
   
 //Calculate COLT parameters 
 calcCOLTParameters(i); 
   
 //Calculate EBO Distribution 
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 EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i], VMR[i]); 
  
} 
 
//Compute COLT Marginal Analysis 
if(Simulation.SLQ_Calculation == 1){ 
 calcCOLTMA(); 
} 
  
for(int i = 0; i <= 1; i++){ 
  
 //Compute Primary Operating Stock Consumable Item Reorder Point 
 calcROP(i);  
 
 //Compute Primary Operating Stock Consumable Item Demand Level 
 calcEOQDL(i); 
  
 //Set Primary Operating Stock Consumable Item Demand Level 
 S[i] = EOQ_DL[i]; 
  
 //Set Primary Operating Stock Consumable Item Reorder Point 
 s[i] = ROP[i]; 
  
 //Update refresh time and description 
 updatePeriod[i] = "Initial"; 
 updateDate[i] = time(); 
} 
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Appendix O.  Item Demand Level Changes Update Process Flow and Java Code 

Item Demand Level Changes Update Process Flow 
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Figure 18.  Flowchart of Item Demand Level Change Update Logic 
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Item Demand Level Change Update Process Java Code 
 

//According to AFMAN 23-110, Volume 2, Part 2, Chapter 19, Paragraph 19.2.2.1.2.2. item 
//stock levels are adjusted either quarterly or whenever the inventory position is less 
//than or equal to the item ROP and the amount of change in the demand level equals or 
//exceeds the square root of the existing level As specified in AFMAN 23-110 Volume 2, 
//Part 2, Chapter 19, Attachment 19B-21 defines the "Square Root" rule "Square Root" Rule 
//- if the new computed level is less than or equal to the current level minus the square 
//root of the current level or greater than or equal to the current level plus the square 
/root of the current level. This event is run daily after the first 30 days and checks if 
//the computed demand level equals or exceeds the square root of the existing level when 
//the inventory position drops below the item's reorder point.  Run the "Square Root" 
//rule check for each item.  Execute code in "if" statement if the closure method is not 
//set or if the closure method is set and the current model time is less the 
//demobilization start date.  Change Flag variable is used to identify if one of the 
//parts had its item demand level changed as a result of the Square Root rule. 
 
int changeFlag = 0; 
if((Simulation.ClosureMethod == 0) || ((Simulation.ClosureMethod != 0) && (time() < 
Simulation.InventoryDrawdownStart))){ 
//Check to see if the part's inventory position is below the reorder point value and the 
//"Square Root" rule is violated. 
 for(int i = 0; i <= 1; i++){  
if((inventoryPosition[i] <= s[i]) && (S[i] >= (S[i] + pow(S[i],(1/2))) || S[i] <= (S[i] - 
pow(S[i],(1/2)))) || (inventoryPosition[i] <= s[i]) && (S[i] >= (S[i] + 
pow(S[i],(1/2))))){  
    //Set Change Flag equal to 1 
    changeFlag = 1; 
    if(i == 0){  
//Calculate average Variance of Order and Ship Time (VOO) //for any past shipments of 
Part 1 & clear the array when //done 
     if(p0VOO.size() != 0){ 
      double sump0VOO = 0; 
      for (int j = 0; j < p0VOO.size(); j++){ 
       sump0VOO += p0VOO.get(j); 
      } 
      qtrlyVOO[0] = sump0VOO/p0VOO.size(); 
     }else if(p0VOO.size() == 0){ 
      qtrlyVOO[0] = 0; 
     } 
p0VOO.clear(); 
    }else if(i == 1){ 
//Calculate average Variance of Order and Ship Time (VOO) //for any past shipments of 
Part 2 & clear the array when //done 
     if(p1VOO.size() != 0){ 
      double sump1VOO = 0; 
      for (int j = 0; j < p1VOO.size(); j++){ 
       sump1VOO += p1VOO.get(j); 
     } 
      qtrlyVOO[1] = sump1VOO/p1VOO.size(); 
     }else if(p1VOO.size() == 0){ 
      qtrlyVOO[1] = 0; 
     } 
     p1VOO.clear(); 
    } 
     
   
    //Calculate Daily Demand Rate 
    calcCRD(0,i); 
 

//Calculate Daily Demand Rate 
    calcDDR(i); 
     
    //Calculate Daily Demand Frequency Rate 
    calcDDFR(i); 
 
    //Calculate Daily Demand Rate 
    calcCDQ_CDQ2(0,i); 
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    //Calculate Variance Of Demand 
    calcVOD(i); 
    
    //Calculate Safety Level Quantity 
    calcSLQ(i); 
    sLQ_formula[i] = sLQ_formulatempvalue[i]; 
    
    //Calculate Order and Ship Time Quantity 
    calcOSTQ(i); 
     
//Update EOQ Value based on how inventory calculations are //computed: Base v. Centrally 
    if(Simulation.SLQ_Calculation == 0){ 
     Base_EOQ(i); 
    }else if (Simulation.SLQ_Calculation == 1){ 
     DLA_EOQ(i); 
    } 
     
    //Update quarterly variables 
    qtrlyOST[i] = get_Main().soS.OST[i]; 
    qtrlyOSTQ[i] = OSTQ[i]; 
    qtrlySLQ[i] = SLQ[i]; 
    qtrlyND[i] = ND[i]; 
    
    //Calculate COLT parameters 
    calcCOLTParameters(i); 
     
    //Calculate EBO Distribution 
EBO[0] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i], VMR[i]); 
      
    //Update refresh time and description 
    updatePeriod[i] = "Out of bounds"; 
    updateDate[i] = time(); 
  } 
 } 
//If Change Flag equals 1 then one of the items had its item demand level changed, 
//therefore the system should be updated 
 if(changeFlag == 1){  
  //Compute COLT Marginal Analysis 
  if(Simulation.SLQ_Calculation == 1){ 
   calcCOLTMA(); 
  } 
   
  for(int i = 0; i <= 1; i++){ 
    
    //Compute Primary Operating Stock Consumable Item Reorder 
Point 
    calcROP(i);  
     
    //Compute Primary Operating Stock Consumable Item Demand 
Level 
    calcEOQDL(i); 
    
    //Set Primary Operating Stock Consumable Item Demand Level 
    S[i] = EOQ_DL[i]; 
    
    //Set Primary Operating Stock Consumable Item Reorder Point 
    s[i] = ROP[i];  
  } 
 //Reset the value of the Change Flag for next time 
 changeFlag = 0; 
 } 
}  
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Appendix P.  Quarterly Inventory Update Process Flow and Java Code 

Quarterly Inventory Update Process Flow 
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Figure 19.  Flowchart of Quarterly Inventory Update Logic 
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Quarterly Inventory Update Process Java Code 
 

//Execute code in "if" statement if the closure method is not set or if the closure 
method is set //and the current model time is less the demobilization  
//start date 
if((Simulation.ClosureMethod == 0) || ((Simulation.ClosureMethod != 0) && (time() < 
Simulation.RedeploymentStart))){ 
 //Is simulated month equal January, April, July or October? 
 if(getMonth() == 0 || getMonth() == 3 || getMonth() == 6 || getMonth() == 9){ 
  //Is simulated calendar day equal to 1? 
  if(getDayOfMonth() == 1){ 
//Calculate average Variance of Order and Ship Time (VOO) for any past //shipments of 
Part 1 
   if(p0VOO.size() != 0){ 
    double sump0VOO = 0; 
    for (int j = 0; j < p0VOO.size(); j++){ 
     sump0VOO += p0VOO.get(j); 
    } 
    qtrlyVOO[0] = sump0VOO/p0VOO.size(); 
   }else if(p0VOO.size() == 0){ 
    qtrlyVOO[0] = 0; 
   } 
    
   //Calculate average VOO for any past shipments of Part 2 
   if(p1VOO.size() != 0){ 
    double sump1VOO = 0; 
    for (int j = 0; j < p1VOO.size(); j++){ 
     sump1VOO += p1VOO.get(j); 
    } 
    qtrlyVOO[1] = sump1VOO/p1VOO.size(); 
   }else if(p1VOO.size() == 0){ 
    qtrlyVOO[1] = 0; 
   } 
    
   //Clear VOO arrays 
   p0VOO.clear(); 
   p1VOO.clear(); 
   
   for(int i = 0; i <= 1; i++){ 
       
    //Calculate Safety Level Quantity 
    calcSLQ(i); 
    sLQ_formula[i] = sLQ_formulatempvalue[i]; 
 

//Calculate Order and Ship Time Quantity 
    calcOSTQ(i); 
     

//Update EOQ Value based on how inventory calculations are 
//computed: Base v. Centrally 

    if(Simulation.SLQ_Calculation == 0){ 
     Base_EOQ(i); 
    }else if (Simulation.SLQ_Calculation == 1){ 
     DLA_EOQ(i); 
    } 
        
    //Calculate COLT parameters 
    calcCOLTParameters(i); 
     
    //Calculate EBO Distribution 

EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], 
Pipe[i], p[i], q[i], VMR[i]);     

     
   } 
    

//Compute COLT Marginal Analysis if inventory calculations are 
centrally computed 

   if(Simulation.SLQ_Calculation == 1){ 
    calcCOLTMA(); 
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   } 
  
   for(int i = 0; i <= 1; i++){ 
 

//Compute Primary Operating Stock Consumable Item Reorder 
//Point 

    calcROP(i);  
 

//Compute Primary Operating Stock Consumable Item Demand 
//Level 

    calcEOQDL(i); 
  
    //Set Primary Operating Stock Consumable Item Demand Level 
    S[i] = EOQ_DL[i]; 
  
    //Set Primary Operating Stock Consumable Item Reorder Point 
    s[i] = ROP[i]; 
  
    //Update refresh time and description 
    updatePeriod[i] = "Quarterly"; 
    updateDate[i] = time(); 
   } 
  } 
 } 
} 
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Appendix Q.  Closure Plan Update Process Flow and Java Code 
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Figure 20.  Flowchart of Closure Plan Update Logic 
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Closure Plan Update Process Java Code 
 
//Execute the first part of this if-else statement if closure method is to set Maximum 
Adjusted //Stock levels to zero 
if(Simulation.ClosureMethod == 1){ 
  
 //Calculate Months to Closure 
 ClosureMonth = getMonth(timeToDate(getEngine().getStopTime())); 
 ClosureYear = getYear(timeToDate(getEngine().getStopTime())); 
 StartMonth = getMonth(timeToDate(Simulation.RedeploymentStart)); 
 StartYear = getYear(timeToDate(Simulation.RedeploymentStart)); 
  
 if(ClosureYear == getYear()){ 
  MToC = ClosureMonth - getMonth(); 
 }else if(ClosureYear > getYear() && ClosureMonth == getMonth()){ 
  MToC = 12 * (ClosureYear-getYear()); 
 }else if(ClosureYear > getYear() && ClosureMonth > getMonth()){ 
  MToC = 12*(ClosureYear - getYear()) + (ClosureMonth - getMonth()); 
 }else if(ClosureYear > getYear() && ClosureMonth < getMonth()){ 
  MToC = 12*(ClosureYear - getYear()) - (getMonth()- ClosureMonth); 
 } 
  
 //Set stock levels to 0 and refresh update time and description 
 for(int i = 0; i <= 1; i++){ 
  S[i] = 0; 
  s[i] = 0; 
  updatePeriod[i] = "Closure - Max ASLs = 0"; 
  updateDate[i] = time(); 
 } 
 
//Execute the second part of this if-else statement if closure method is to utilized 
//Expected Demand Quantities as the item's new Demand Level 
}else if(Simulation.ClosureMethod == 2){ 
 
 //Calculate Months to Closure 
 ClosureMonth = getMonth(timeToDate(getEngine().getStopTime())); 
 ClosureYear = getYear(timeToDate(getEngine().getStopTime())); 
 StartMonth = getMonth(timeToDate(Simulation.RedeploymentStart)); 
 StartYear = getYear(timeToDate(Simulation.RedeploymentStart)); 
  
 if(ClosureYear == getYear()){ 
  MToC = ClosureMonth - getMonth(); 
 }else if(ClosureYear > getYear() && ClosureMonth == getMonth()){ 
  MToC = 12 * (ClosureYear-getYear()); 
 }else if(ClosureYear > getYear() && ClosureMonth > getMonth()){ 
  MToC = 12*(ClosureYear - getYear()) + (ClosureMonth - getMonth()); 
 }else if(ClosureYear > getYear() && ClosureMonth < getMonth()){ 
  MToC = 12*(ClosureYear - getYear()) - (getMonth()- ClosureMonth); 
 } 
  
 for(int i = 0; i <= 1; i++){ 
  
  if(i == 0){ 

//Calculate average Variance of Order and Ship Time (VOO) for any 
//past shipments of Part 1 

   if(p0VOO.size() != 0){ 
    double sump0VOO = 0; 
    for (int j = 0; j < p0VOO.size(); j++){ 
     sump0VOO += p0VOO.get(j); 
    } 
    qtrlyVOO[0] = sump0VOO/p0VOO.size(); 
   }else if(p0VOO.size() == 0){ 
    qtrlyVOO[0] = 0; 
   } 
   //Clear VOO arrays 
   p0VOO.clear(); 
  }else if(i == 1){ 
   //Calculate average VOO for any past shipments of Part 2 
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   if(p1VOO.size() != 0){ 
    double sump1VOO = 0; 
    for (int j = 0; j < p1VOO.size(); j++){ 
     sump1VOO += p1VOO.get(j); 
    } 
    qtrlyVOO[1] = sump1VOO/p1VOO.size(); 
   }else if(p1VOO.size() == 0){ 
    qtrlyVOO[1] = 0; 
   } 
   //Clear VOO arrays 
   p1VOO.clear(); 
  } 
  
  //Calculate Cumulative Recurring Demand 
  calcCRD(0,i); 
 

//Calculate Daily Demand Rate 
  calcDDR(i); 
   
  //Calculate Daily Demand Frequency Rate 
  calcDDFR(i); 
 

//Calculate Cumulative Demand Quantity (CDQ) and Cumulative Demand 
//Quantity Squared (CDQ2) 

  calcCDQ_CDQ2(0,i);   
 
  //Calculate Variance Of Demand 
  calcVOD(i); 
   
  //Calculate Safety Level Quantities 
  calcSLQ(i); 
  sLQ_formula[i] = sLQ_formulatempvalue[i]; 
   
  //Calculate Order and Ship Time Quantities 
  calcOSTQ(i); 
   

//Update EOQ Value based on how inventory calculations are computed: Base 
//versus Centrally 

  if(Simulation.SLQ_Calculation == 0){ 
   Base_EOQ(i); 
  }else if (Simulation.SLQ_Calculation == 1){ 
   DLA_EOQ(i); 
  } 
   
  //Update quarterly variables 
  qtrlyOST[i] = get_Main().soS.OST[i]; 
  qtrlyOSTQ[i] = OSTQ[i]; 
  qtrlySLQ[i] = SLQ[i]; 
  qtrlyND[i] = ND[i]; 
   
  //Calculate COLT parameters 
  calcCOLTParameters(i); 
   
  //Calculate EBO Distribution 

EBO[i] = calc_nbEBO(i, wEOQ[i], s[i], BenchStock[i], Pipe[i], p[i], q[i], 
VMR[i]); 

 } 
   
  //Compute COLT Marginal Analysis 
  if(Simulation.SLQ_Calculation == 1){ 
   calcCOLTMA(); 
  } 
   

//If aircraft remain calculate Order-Up-To-Levels with the Expected Demand 
//Quantity method 

  if(get_Main().aircraft.size() > 0){  
   
   for(int i = 0; i <= 1; i++){ 
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    //Calculate Expected Demands 
    if((MToC-2) > 0){ 
     EDmds[i] = 30*(MToC-2) * DDR[i]; 
    }else if((MToC-2)== 0){ 
     EDmds[i] = 0; 
    } 
     
    //Calculate Expected Demand Quantities (Rounded EDmds) 
    if(EDmds[i] > .5){ 
     EDQ[i] = round(EDmds[i]); 
    }else if (EDmds[i] < .5){ 
     EDQ[i] = round(((MToC-2)/25) + EDmds[i]); 
    } 
     
    //Calculate Primary Operating Stock Closure Stock Level 
    if(EDQ[i] < S[i] && EDQ[i] > 0){ 
      

//Compute POS Consumable Item Reorder Point 
calcROP(i); 
 
//Set Primary Operating Stock Consumable Item 
//Reorder Point 

     s[i] = ROP[i]; 
      
     //Set demand level 

S[i] = EDQ[i]; 
 

    }else if(EDQ[i] == 0){ 
//Set Primary Operating Stock Consumable Item 
//Reorder Point 

     s[i] = 0; 
      
     //Set demand level 

S[i] = 0; 
 
    } 
   } 
//If no aircraft remain, set Order-Up-To-Levels and Reorder points to a value of zero 
  }else if(get_Main().aircraft.size() == 0){ 
   s[i] = 0; 
   S[i] = 0; 
  } 
  
 //Update refresh time and description 
 for(int i = 0; i <=1; i++){ 
  updatePeriod[i] = "Closure - Decreasing Stock Levels"; 
  updateDate[i] = time(); 
 } 
  
} 
 
//Determine if there is any excess stock to be shipped 
shipp0FromELRS(); 
shipp1FromELRS(); 
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Appendix R.  CRD, CDQ, CDQ2, and DOFD Calculation Flow and Java Code 

Calculation of CRD, CDQ, CDQ2, and DOFD Process Flow 
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Figure 21.  Flowchart of CRD, CDQ, CDQ2 and DOFD Calculation Logic 
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Calculation of CRD, CDQ, CDQ2, and DOFD Process Java Code 
 
//As specified in AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31 and 
//Attachment 19B-15 this event updates the CRD, CDQ, CDQ2  
//and DOFD values based on annualization rules 
for(int i = 0; i <= 1; i++){ 
 //Is model time more than 365 days? 
 if(time() >= 365){ 
  //Are simulated months equal to March and September? 
  if(getMonth() == 2 || getMonth() == 8){ 
  //Is simulate calendar day equal to 30? 
   if(getDayOfMonth() == 30){ 
    if(time() - DOFD[i] >= 365){ 
//Annualize CDQ and CDQ2 IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-
15, Figure 19B15.2 (CDQ Prime) 
     calcCDQ_CDQ2(1,i); 
//Annualize CRD IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31, Figure 
19B31.1 note  
     calcCRD(1,i); 
//Annualize DOFD IAW AFMAN 23-110, Volume 2, Part 2, Chapter 19, Attachment 19B-31, 
Figure 19B31.1 note  
     DOFD[i] = time() - 365; 
    } 
   } 
  } 
//If simulated model time is less than 365 days, calculate CDQ, CDQ2, and CRD by using 
//counts of agent demands (code located in ELRS customer port). 
 }else if(time() < 365){ 
 } 
} 
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Appendix S.  Post-hoc Tests for Fleet Sizes of 24 and 36 

Table 13.  Mann-Whitney U Test Results for 24 Aircraft 

Response Design Point -Design Point p-value 

Total 
Backorders 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 12-Months/Max ASL 0.0018* 
6-Months/EDQ 12-Months/EDQ 0.0462 
6-Months/EDQ 12-Months/Max ASL 0.0003* 

Total 
Backorder 
Quantities 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0001* 
6-Months/Max ASL 12-Months/Max ASL 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0002* 
6-Months/EDQ 12-Months/EDQ 0.0465 
6-Months/EDQ 12-Months/Max ASL 0.0258 

* - Statistically significant at α*=0.0083 

 

 

   

Figure 22.  Box Plots for 24 Aircraft 
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Table 14.  Mann-Whitney U Test Results for 36 Aircraft 

Response Design Point -Design Point p-value 

Total 
Backorders 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 12-Months/Max ASL 0.0007* 
6-Months/EDQ 12-Months/EDQ 0.9109 
6-Months/EDQ 12-Months/Max ASL 0.0001* 

Total 
Backorder 
Quantities 

6-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 6-Months/EDQ 0.0001* 
12-Months/Max ASL 12-Months/EDQ 0.0001* 
6-Months/Max ASL 12-Months/Max ASL 0.0251 
6-Months/EDQ 12-Months/EDQ 0.8626 
6-Months/EDQ 12-Months/Max ASL 0.0001* 

* - Statistically significant at α*=0.0083 

 

 

   

Figure 23.  Box Plots for 36 Aircraft 

 

 

 



128 

Appendix T.  Summary Chart 
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